Solution for review exercise 1 (chapter 5) in Pitman

First apply the definition of conditional probability page 36

$$
P\left(\left.Y \geq \frac{1}{2} \right\rvert\, Y \geq X^{2}\right)=\frac{P\left(Y \geq \frac{1}{2} \cap Y \geq X^{2}\right)}{P\left(Y \geq X^{2}\right)}
$$

The joint density of X and Y is the product of the marginal densities since X and Y are independent (page 349). We calculate the denominator using the formula for the probability of a set B page 349

$$
P\left(Y \geq X^{2}\right)=\int_{0}^{1} \int_{x^{2}}^{1} 1 \cdot 1 \cdot \mathrm{~d} y \mathrm{~d} x=\int_{0}^{1}\left(1-x^{2}\right) \mathrm{d} x=1-\frac{1}{3}=\frac{2}{3}
$$

and the numerator

$$
P\left(Y \geq \frac{1}{2} \cap Y \geq X^{2}\right)=P\left(Y \geq X^{2}\right)-P\left(Y<\frac{1}{2} \cap Y \geq X^{2}\right)
$$

Now for the last term

$$
\begin{gathered}
P\left(Y<\frac{1}{2} \cap Y \geq X^{2}\right)=\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x^{2}}^{\frac{1}{2}} 1 \cdot \mathrm{~d} y \mathrm{~d} x=\int_{0}^{\frac{1}{\sqrt{2}}}\left(\frac{1}{2}-x^{2}\right) \mathrm{d} x \\
=\frac{1}{2} \frac{1}{\sqrt{2}}-\frac{1}{3} \frac{1}{2} \frac{1}{\sqrt{2}}=\frac{1}{3 \sqrt{2}}
\end{gathered}
$$

Finally we get

$$
P\left(\left.Y \geq \frac{1}{2} \right\rvert\, Y \geq X^{2}\right)=\frac{\frac{2}{3}-\frac{1}{3 \sqrt{2}}}{\frac{2}{3}}=1-\frac{\sqrt{2}}{4}
$$

