Solution for review exercise 26 (chapter 4) in Pitman

Question a)

$$
E\left(W_{t}\right)=E\left(X e^{t Y}\right)=E(X) E\left(e^{t Y}\right)
$$

by the independence of X and Y. We find $E\left(e^{t Y}\right)$ from the definition of the mean.

$$
E\left(e^{t Y}\right)=\int_{1}^{\frac{3}{2}} e^{t y} \cdot 2 \mathrm{~d} y=\frac{2 e^{t}}{t}\left(e^{\frac{t}{2}}-1\right)
$$

Inserting this result and $E(X)=2$ we get

$$
E\left(W_{t}\right)=2 \frac{2 e^{t}}{t}\left(e^{\frac{t}{2}}-1\right)
$$

Alternatively we could derive the joint density of X and Y to

$$
f(x, y)=2(2 x)^{3} e^{-2 x}, \quad 0<x, 0<y<1
$$

where we have used that X has Gamma $(4,2)$ density, and apply the formula for $E(g(X, Y))$ page 349 .

Question b) Since X and Y are independent we find $E\left(W_{t}^{2}\right)$

$$
E\left(W_{t}^{2}\right)=E\left(X^{2}\right) E\left(\left(e^{t Y}\right)^{2}\right)
$$

where $E\left(X^{2}\right)=\operatorname{Var}(X)+(E(X))^{2}=5$, see eg. page 481. Next we derive

$$
E\left(\left(e^{t Y}\right)^{2}\right)=\frac{e^{2 t}}{t}\left(e^{t}-1\right)
$$

and apply the computational formula for the variance page 261

$$
S D\left(W_{t}\right)=\sqrt{5 \frac{e^{2 t}}{t}\left(e^{t}-1\right)-\left(2 \frac{2 e^{t}}{t}\left(e^{\frac{t}{2}}-1\right)\right)^{2}}=
$$

