Solution for review exercise 34 (chapter 3) in Pitman

Question a) The function $g_{z}(x)=z^{x}$ defines a function of x for any $|z|<1$. For fixed z we can find the $E\left(g_{z}(X)\right)$ using the definition in the box on the top of page 175. We find

$$
E\left(g_{z}(X)\right)=E\left(z^{X}\right)=\sum_{x=0}^{\infty} z^{x} P(X=x)
$$

However, this is a power series in z that is absolutely convergent for $|z| \leq 1$ and thus defines a C^{∞} function of z for $|z|<1$.

Question b) The more elegant and maybe more abstract proof is

$$
G_{X+Y}(z)=E\left(z^{X+Y}\right)=E\left(z^{X} z^{Y}\right)
$$

From the independence of X and Y we get (page 177)

$$
G_{X+Y}(z)==E\left(z^{X}\right) E\left(z^{Y}\right)=G_{X}(z) G_{Y}(z)
$$

The more crude analytic proof goes as follows

$$
G_{X+Y}(z)=E\left(z^{X+Y}\right)=\sum_{k=0}^{\infty} z^{k} P(X+Y=k)=\sum_{k=0}^{\infty} z^{k}\left(\sum_{i=0}^{k} P(X=i, Y=k-i)\right)
$$

again from the independence of X and Y we get

$$
G_{X+Y}(z)=\sum_{k=0}^{\infty} z^{k}\left(\sum_{i=0}^{k} P(X=i) P(Y=k-i)\right) \sum_{i=0}^{\infty} \sum_{k=i}^{\infty} z^{k} P(X=i) P(Y=k-i)
$$

The interchange of the sums are justified since all terms are positive. The rearrangement is a commonly used tool in analytic derivations in probability. It is quite instructive to draw a small diagram to verify the limits of the sums. We now make further rearrangements

$$
\begin{gathered}
G_{X+Y}(z)=\sum_{i=0}^{\infty} \sum_{k=i}^{\infty} z^{k} P(X=i) P(Y=k-i) \\
=\sum_{i=0}^{\infty} z^{i} P(X=i) \sum_{k=i}^{\infty} z^{k-i} P(Y=k-i)=\sum_{i=0}^{\infty} z^{i} P(X=i) \sum_{m=0}^{\infty} z^{m} P(Y=m)
\end{gathered}
$$

by a change of variable $(m=k-i)$. Now

$$
G_{X+Y}(z)=\sum_{i=0}^{\infty} z^{i} P(X=i) \sum_{m=0}^{\infty} z^{m} P(Y=m)=\sum_{i=0}^{\infty} z^{i} P(X=i) G_{Y}(z)=G_{X}(z) G_{Y}(z)
$$

Question c) By rearranging $S_{n}=\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}$ we deduce

$$
G_{S_{n}}(z)=\prod_{i=1}^{n} G_{X_{i}}(z)
$$

We first find the generating function of a Bernoulli distributed random variable(binomial with $n=1$)

$$
E\left(z^{X}\right)=\sum_{x=0}^{1} z^{x} P(X=x)=z^{0} \cdot(1-p)+z^{1} \cdot p=1-p(1-z)
$$

Now using the general result for X_{i} with binomial distribution $b\left(n_{i}, p\right)$ we get

$$
E\left(z^{X_{i}}\right)=\left(E\left(z^{X}\right)\right)^{n_{i}}=(1-p(1-z))^{n_{i}}
$$

Generalizing this result we find

$$
E\left(z^{S_{n}}\right)=(1-p(1-z))^{\sum_{i=1}^{n} n_{i}}
$$

i.e. that the sum of independent binomially distributed random variables is itself binomially distributed provided equality of the p_{i} 's.

Question d) The generating function of the Poisson distribution is given in exercise 3.5.19. Such that

$$
G_{S_{n}}(z)=\prod_{i=1}^{n} e^{-\mu_{i}(1-z)}=e^{-\sum_{i=1}^{n} \mu_{i}(1-z)}
$$

The result proofs that the sum of independent Poisson random variables is itself Poisson.

Question e)

$$
G_{X}(z)=\frac{z p}{1-z(1-p)} \quad G_{S_{n}}=\left(\frac{z p}{1-z(1-p)}\right)^{n}
$$

Question f)

$$
G_{S_{n}}=\left(\frac{z p}{1-z(1-p)}\right)^{\sum_{i=1}^{n} r_{i}}
$$

