Solution for review exercise 29 (chapter 3) in Pitman

Question a) We note that the probability does not depend on the ordering, i.e. the probability of a certain sequence depends on the number of 1's among the X_{i} 's not on the ordering.

$$
\frac{\prod_{j=0}^{k-1}(b+j d) \prod_{j=0}^{n-k-1}(w+j d)}{\prod_{j=0}^{k-1}(b+w+j d)}
$$

Question b) To obtain the distribution of S_{n} the number of black balls drawn, we note that there is $\binom{n}{k}$ different sequences each with the probability derived in question a) that lead to the event $S_{n}=k$.

$$
P\left(S_{n}=k\right)=\binom{n}{k} \frac{\prod_{j=0}^{k-1}(b+j d) \prod_{j=0}^{n-k-1}(w+j d)}{\prod_{j=0}^{k-1}(b+w+j d)}
$$

Question c)

$$
\binom{n}{k} \frac{k!(n-k)!}{(n+1)!}=\frac{1}{n+1}
$$

Question d) Not independent since, but interchangeable
Question e) We approach the question by induction. We first show

$$
P\left(X_{1}=1\right)=\frac{b}{b+w}
$$

We then derive $P\left(X_{n+1}=1\right)$ assuming $P\left(X_{n}=1\right)=b b+w$ in a Polya model.

$$
P\left(X_{n+1}=1\right)=P\left(X_{n+1}=1 \mid X_{1}=1\right) P\left(X_{1}=1\right)+P\left(X_{n+1}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right)=P\left(X_{n+1}=1 \mid X_{1}\right.
$$

To proceed we note that the probability $P\left(X_{n+1}=1 \mid X_{1}=1\right)$ is the probability of $P\left(Y_{n}=1\right)$ in an urn scheme starting with $b+d$ blacks and w whites, thus $P\left(X_{n+1}=1 \mid X_{1}=1\right)=P\left(Y_{n}=1\right)=\frac{b+d}{b+w+d}$. Correspondingly $P\left(X_{n+1}=1 \mid X_{1}=\right.$ $0)=\frac{b}{b+w+d}$. Finally

$$
P\left(X_{n+1}=1\right)=\frac{b+d}{b+w+d} \frac{b}{b+w}+\frac{b}{b+w+d} \frac{w}{b+w}=\frac{b}{b+w}
$$

Question f)

$$
P\left(X_{5}=1 \mid X_{10}=1\right)=\frac{P\left(X_{10}=1 \mid X_{5}=1\right) P\left(X_{5}=1\right)}{P\left(X_{10}=1\right)}=P\left(X_{10}=1 \mid X_{5}=1\right)
$$

using Bayes rule, or from the exchangeability. From the exchangeability we also have

$$
P\left(X_{10}=1 \mid X_{5}=1\right)=P\left(X_{2}=1 \mid X_{1}=1\right)=\frac{b+d}{b+w+d}
$$

