Solution for review exercise 19 (chapter 3) in Pitman

Question a)

$$
P(Y \geq X)=\sum_{x=0}^{\infty} P(X=x) P(Y \geq X \mid X=x)
$$

now X and Y are independent such that

$$
P(Y \geq X)=\sum_{x=0}^{\infty} P(X=x) P(Y \geq x)
$$

There is a convenient formula for the tail probabilities of a geometric distribution, see eg. page 482. We need to adjust this result to the present case of a geometric distribution with range $0,1, \ldots$ (counting only failures), such that $P(Y \geq x)=$ $(1-p)^{x}$. We now insert this result and the Poisson densities to get

$$
P(Y \geq X)=\sum_{x=0}^{\infty} \frac{\mu^{x}}{x!} e^{-\mu}(1-p)^{x}=e^{-\mu} e^{\mu(1-p)}=e^{-\mu p}
$$

where we have used the exponential series $\sum_{x=0}^{\infty} \frac{(\mu(1-p))^{x}}{x!}=e^{\mu(1-p)}$.

Question b)

$$
e^{-\mu p}=e^{-\frac{1}{2}}=0.6065
$$

