Solution for review exercise 13 (chapter 2) in Pitman

The probability that the manufacturer will have to replace a packet is

$$
\begin{aligned}
P(\text { replace }) & =\sum_{i=3}^{50}\binom{50}{i} 0.01^{i} 0.99^{50-i}=1-\sum_{i=0}^{2}\binom{50}{i} 0.01^{i} 0.99^{50-i} \\
= & 0.99^{50}\left(1+\frac{0.01}{0.99} \cdot 50\left(1+\frac{0.01}{0.99} \cdot \frac{49}{2}\right)\right)=0.0138
\end{aligned}
$$

Pitman claims this probability to be 0.0144 . We evaluate the second probability using the Normal approximation to the Binomial distribution. Let X denote the number of packets the manufacturer has to replace. The random variable X follows a Binomial distribution with $n=4000$ and $p=$. We can evaluate the probability using the normal approximation.

$$
\begin{gathered}
P(X>40)=1-P(X \leq 40) \tilde{=} 1-\Phi\left(\frac{40+\frac{1}{2}-4000 \cdot 0.0138}{\sqrt{4000 \cdot 0.0138 \cdot 0.9862}}\right) \\
1-\Phi\left(\frac{-14.77}{7.38}\right)=1-\Phi(-2.00)=0.9772
\end{gathered}
$$

Slightly different from Pitman's result due to the difference above.

