Solution for review exercise 10 (chapter 1) in Pitman

We define the events
E_{k} Exactly k blood types are represented
Ai i persons have blood type A
Bi i persons have blood type B
Ci i persons have blood type C
Di i persons have blood type D

Question a)

$$
P\left(E_{2}\right)=P\left(A_{2}\right)+P\left(B_{2}\right)+P\left(C_{2}\right)+P\left(D_{2}\right)=p_{a}^{2}+p_{b}^{2}+p_{c}^{2}+p_{d}^{2}=0.3816
$$

Question b) We have $p(k)=P\left(E_{k}\right)$. By combinatorial considerations we can show

$$
P\left(A_{i_{1}} \cap B_{i_{2}} \cap C_{i_{3}} \cap D_{i_{4}}\right)=\frac{\left(i_{1}+i_{2}+i_{3}+i_{4}\right)!}{i_{1}!i_{2}!i_{3}!i_{4}!} p_{a}^{i_{1}} p_{b}^{i_{2}} p_{c}^{i_{3}} p_{d}^{i_{4}}
$$

with $i_{1}+i_{2}+i_{3}+i_{4}=4$, in our case. We have to sum over the appropriate values of $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$.
It is doable but much more cumbersome to use basic rules. We get

$$
\begin{gathered}
p(1)=0.0687 \quad p(2)=0.5973 \quad p(3)=0.3163 \quad p(4)=0.0177 \\
p(1)=P\left(E_{1}\right)=P\left(A_{4}\right)+P\left(B_{4}\right)+P\left(C_{4}\right)+P\left(D_{4}\right)=p_{a}^{4}+p_{b}^{4}+p_{c}^{4}+p_{d}^{4}=0.0687 \\
p(4)=P\left(E_{4}\right)=P\left(A_{1} \cap B_{1} \cap C_{1} \cap D_{1}\right)=24 p_{a} p_{b} p_{c} p_{d}=0.0177
\end{gathered}
$$

To calculate $p(3)=P\left(E_{3}\right)$ we use the law of averaged conditional probabilities

$$
p(3)=P\left(E_{3}\right)=\sum_{i=0}^{4} P\left(E_{3} \mid A_{i}\right) P\left(A_{i}\right)
$$

We immediately have

$$
P\left(E_{3} \mid A_{4}\right)=P\left(E_{3} \mid A_{3}\right)=0
$$

To establish $P\left(E_{3} \mid A_{2}\right)$ we argue

$$
P\left(E_{3} \mid A_{2}\right)=P\left(B_{1} \cap C_{1} \mid A_{2}\right)+P\left(B_{1} \cap D_{1} \mid A_{2}\right)+P\left(C_{1} \cap D_{1} \mid A_{2}\right)=\frac{p_{b} p_{c}+p_{b} p_{d}+p_{c} p_{d}}{\left(1-p_{a}\right)^{2}}
$$

further

$$
P\left(E_{3} \mid A_{0}\right)=P\left(B_{2} \cap C_{1} \cap D_{1} \mid A_{0}\right)+P\left(B_{1} \cap C_{2} \cap D_{1} \mid A_{0}\right)+P\left(B_{1} \cap C_{1} \cap D_{2} \mid A_{0}\right)=\frac{4 p_{b} p_{c} p_{d}\left(p_{b}+p_{c}+p_{d}\right.}{\left(1-p_{a}\right)^{4}}
$$

To evaluate $P\left(E 3 \mid A_{1}\right)$ we use the law of averaged conditional probability once more (see Review Exercise 1.13)

$$
P(E 3 \mid A 1)=\sum_{i=1}^{4} P\left(E 3 \mid A_{1} \cap B_{i}\right) P\left(B_{i} \mid A_{1}\right)
$$

with

$$
\begin{gathered}
P\left(E 3 \mid A_{1} \cap B_{0}\right)=\frac{3 p_{c} p_{d}\left(p_{c}+p_{d}\right)}{\left(1-p_{a}-p_{b}\right)^{3}} \\
P\left(E 3 \mid A_{1} \cap B_{1}\right)=\frac{p_{c}^{2}+p_{d}^{2}}{\left(1-p_{a}-p_{b}\right)^{2}} \\
P\left(E 3 \mid A_{1} \cap B_{2}\right)=\frac{p_{c}+p_{d}}{1-p_{a}-p_{b}} \\
P\left(E 3 \mid A_{1} \cap B_{3}\right)=0
\end{gathered}
$$

and we get

$$
P(E 3 \mid A 1)=\frac{3 p_{c} p_{d}\left(p_{c}+p_{d}\right)}{\left(1-p_{a}-p_{b}\right)^{3}}\left(\frac{1-p_{a}-p_{b}}{1-p_{a}}\right)^{3}+\frac{p_{c}^{2}+p_{d}^{2}}{\left(1-p_{a}-p_{b}\right)^{2}}
$$

