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Solution for exercise 1.1.1 in Pitman

Question a) 2
3

Question b) 67%.

Question c) 0.667

Question a.2) 4
7

Question b.2) 57%.

Question c.2) 0.571
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Solution for exercise 1.1.2 in Pitman

Question a) 8 of 11 words has four or more letters: 8
11

Question b) 4 words have two or more vowels: 4
11

Question c) The same words qualify (4): 4
11
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Solution for exercise 1.2.4 in Pitman

It may be useful to read the definition of Odds and payoff odds in Pitman pp. 6 in
order to solve this exercise

Question a) We define the profit pr

pr = 10(8 + 1)− 100 · 1 = −10

Question b) The average gain pr. game is defined as the profit divided by the number
of games

pr

n
=
−10

100
= −0.1
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Solution for exercise 1.3.1 in Pitman

Denote the fraction the neighbor gets by x. Then your friend gets 2x and you get 4x.
The total is one, thus x = 1

7
and you get 4

7
.
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Solution for exercise 1.3.2 in Pitman

Question a) The event which occurs if exactly one of the events A and B occurs

(A ∩Bc) ∪ (Ac ∩B)

Question b) The event which occurs if none of the events A, B, or C occurs.

(Ac ∩Bc ∩ Cc)

Question c) The events obtained by replacing “none” in the previous question by
“exactly one”, “exactly two”, and “three”

Exactly one (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C)

Exactly two (A ∩B ∩ Cc) ∪ (A ∩Bc ∩ C) ∪ (Ac ∩B ∩ C)

Exactly three (A ∩B ∩ C)
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Solution for exercise 1.3.4 in Pitman

We define the outcome space Ω = {0, 1, 2}

Question a) yes, {0, 1}

Question b) yes, {1}

Question c) no, (we have no information on the sequence)

Question d) yes, {1, 2}
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Solution for exercise 1.3.8 in Pitman

It may be useful to make a sketch similar to the one given at page 22 in Pitman.

From the text the following probabilities are given:

P (A) = 0.6 P (Ac) = 1− P (A) = 0.4

P (B) = 0.4 P (Bc) = 1− P (B) = 0.6

P (AB) = P (A ∩B) = 0.2

Question a)

P (A ∪B) = P (A) + P (B)− P (AB) = 0.6 + 0.4− 0.2 = 0.8

Question b)

P (Ac) = 1− P (A) = 1− 0.6 = 0.4

Question c)

P (Bc) = 1− P (B) = 1− 0.4 = 0.6

Question d)

P (AcB) = P (B)− P (AB) = 0.4− 0.2 = 0.2

Question e)

P (A ∪Bc) = 1− P (B) + P (AB) = 1− 0.4 + 0.2 = 0.8

Question f)

P (AcBc) = 1− P (A)− P (B) + P (AB) = 1− 0.6− 0.4 + 0.2 = 0.2
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Solution for exercise 1.3.9 in Pitman

Question a)

P (F ∪G) = P (F ) + P (G)− P (F ∩G) = 0.7 + 0.6− 0.4 = 0.9

using exclusion-inclusion.

Question b)

P (F∪G∪H) = P (F )+P (G)+P (H)−P (F∩G)−P (F∩H)−P (G∩H)+P (F∩G∩H)

= 0.7 + 0.6 + 0.5− 0.4− 0.3− 0.2 + 0.1 = 1.0

using the general version of exclusion-inclusion (see exercise 1.3.11 and 1.3.12).

Question c)
P (F c ∩Gc ∩H) = P ((F ∪G)c ∩H)

P (H) = P ((F ∪G)c ∩H) + P ((F ∪G) ∩H)

The latter probability is

P ((F ∪G)∩H) = P ((F ∩H)∪ (G∩H)) = P (F ∩H)+P (G∩H)−P (F ∩G∩H)

= 0.3 + 0.2− 0.1 = 0.4

such that
P (F c ∩Gc ∩H) = 0.5− 0.4 = 0.1
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Solution for exercise 1.3.11 in Pitman

P (A ∪B ∪ C) = P (A ∪ (B ∪ C))

now applying inclusion-exclusion

P (A∪(B∪C)) = P (A)+P (B∪C)−P (A∩(B∪C)) = P (A)+P (B∪C)−P ((A∩B)∪(A∩C))

once again we aplly inclusion-exclusion (the second and the third time) to get

P (A∪(B∪C)) = P (A)+P (B)+P (C)−P (B∩C)−(P (A∩B)+P (A∩C)−P ((A∩B)∩(A∩C)))

= P (A) + P (B) + P (C)− P (B ∩ C)− P (A ∩B)− P (A ∩ C) + P (A ∩B ∩ C)
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Solution for exercise 1.3.12 in Pitman

We know from exercise 1.3.11 that the formula is valid for n = 3 and consider

P
(
∪n+1
i=1 Ai

)
= P ((∪ni=1Ai) ∪ An+1) .

Using exclusion-inclusion for two events we get the formula stated p.32. Since the
exclusion-inclusion formula is assumed valid for n events we can use this formula for
the first term. To get through we realize that the last term

P (∪ni=1AiAn+1)

is of the form
P (∪ni=1Bi)

with Bi = Ai ∩An+1, implying that we can use the inclusion-exclusion formula for this
term too. The proof is completed by writing down the expansion explicitly.
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Solution for exercise 1.4.1 in Pitman

Question a) Can’t be decided we need to know the proportions of women and men
(related to the averaging of conditional probabilities p. 41)

Question b) True, deduced from the rule of averaged conditional probabilities

Question c) True

Question d) True

Question e)
3

4
· 0.92 +

1

4
· 0.88 = 0.91

true
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Solution for exercise 1.4.2 in Pitman

We define the events

A The light bulb is not defect

B The light bulb is produced in city B

From the text the following probabilities are given:

P (A|B) = 0.99 P (Ac|B) = 1− P (A|B) = 0.01

P (B) = 1/3 P (Bc) = 2/3

solution

P (A ∩B) = P (B)P (A|B) = 0.99/3 = 0.33
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Solution for exercise 1.4.9 in Pitman

Question a) In scheme A all 1000 students have the same probability ( 1
1000

) of being
chosen. In scheme B the probability of being chosen depends on the school. A
student from the first school will be chosen with probability 1

300
, from the second

with probability 1
1200

, and from the third with probability 1
1500

. The probability
of chosing a student from school 1 is p1 · 1

100
, thus p1 = 1

10
. Similarly we find

p2 = 2
5

and p3 = 1
2
.
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Solution for exercise 1.5.3 in Pitman

C The event that the chip is ok

A The event that a chip is accepted by the cheap test

Question a)

P (C|A) =
P (A|C)P (C)

P (A|C)P (C) + P (A|Cc)P (C)c
=

1 · 0.8
0.8 + 0.1 · 0.2

Question b) We introduce the event

S Chip sold

P (S) = 0.8 + 0.2 · 0.1 = 0.82

The probability in question is

P (Cc|S) =
P (S|Cc)P (Cc)

P (S|Cc)P (Cc) + P (S|C)P (C)
=

0.1 · 0.2
0.02 + 1 · 0.8 =

1

41
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Solution for exercise 1.5.5 in Pitman

Define the events

H A randomly selected person is healthy

D A randomly selected person is diagnosed with the disease

Question a) From the text we have the following quantities

P (H) = 0.99 P (D|H) = 0.05 P (D|H c) = 0.8

and from the law of averaged conditional probabilities we get

P (D) = P (H)P (D|H) + P (Hc)P (D|Hc) = 0.99 · 0.05 + 0.01 · 0.8 = 0.0575

Question b) The proability in question

P (Hc ∩Dc) = P (Hc)P (Dc|Hc) = 0.01 ∗ 0.2 = 0.002

using the multiplication (chain) rule

Question c) The proability in question

P (H ∩Dc) = P (H)P (Dc|H) = 0.99 ∗ 0.95 = 0.9405

using the multiplication (chain) rule

Question d) The probability in question is P (H c|D). We use Bayes rule to “inter-
change” the conditioning

P (Hc|D) =
P (D|Hc)P (Hc)

P (D|Hc)P (Hc) + P (D|H)P (H)
= 0.8 · 0.010.008 + 0.05 · 0.99 = 0.139

Question e) The probabilities are estimated as the percentage of a large group of
people, which is indeed the frequency interpretation.
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Solution for exercise 1.5.9 in Pitman

Denote the event that a shape of type i is picked by Ti, the event that it lands flat by
F and the event that the number rolled is six by S. We have P (Ti) = 1

3
, i = 1, 2, 3,

P (F |T1) = 1
3
, P (F |T2) = 1

2
, and P (F |T3) = 2

3
P (S|F ) = 1

2
, and P (S|F c) = 0.

Question a) We first note that the six events Ti ∩ F and Ti ∩ F c (i = 1, 2, 3) is a
partition of the outcome space. Now using The Rule of Averaged Conditional
Probabilities (The Law of Total Probability) page 41

P (S) = P (S|T1∩F )P (T1∩F )+P (S|T2∩F )P (T2∩F )+P (S|T3∩F )P (T3∩F )+P (S|T1∩F c)P (T1∩F c)+P (S|T2∩F c)P (T2∩F c)+P (S|T3∩F c)P (T3∩F c)

The last three terms are zero. We apply The Multiplication Rule for the proba-
bilities P (Ti ∩ F ) leading to

P (S) = P (S|T1∩F )P (F |T1)P (T1)+P (S|T2∩F )P (F |T2)P (T2)+P (S|T3∩F )P (F |T3)P (T3)

a special case of The Multiplication Rule for n Events page 56. Inserting numbers

P (S) =
1

2

1

3

1

3
+

1

2

1

2

1

3
+

1

2

2

3

1

3
=

1

4

Question b) The probability in question is P (T1|S). Applying Bayes’ rule page 49

P (T1|S) =
P (S|T1)P (T1)

P (S)
=

1
6

1
3

1
4

=
2

9
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Solution for exercise 1.6.1 in Pitman

This is another version of the birthday problem. We denote the event that the first n
persons are born under different signs, exactly as in example 5 page 62. Correspond-
ingly, Rn denotes the event that the n’th person is the first person born under the same
sign as one of the previous n− 1 persons. We find

P (Dn) =
n∏

i=1

(
1− i− 1

12

)
, n ≤ 13

We find P (D4) = 0.57 and P (D5) = 0.38.
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Solution for exercise 1.6.5 in Pitman

Question a) We will calculate the complementary probability, the no student has the
same birthday and do this sequentially. The probability that the first student has
a different birthday is 364

365
, the same is true for all the remaining n− 2 students.

The probability in question is

P (All other n− 1 students has a different birthday than no.1) = 1−
(

364

365

)n−1

Question b)

1−
(

364

365

)n−1

≥ 1

2
⇔ n ≥ ln (2)

ln (365)− ln (364)
+ 1 = 253.7

Question c) In the birthday problem we only ask for two arbitrary birthdays to be
the same, while the question in this exercise is that at least one out of n− 1 has
a certain birthday.
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Solution for exercise 1.6.6 in Pitman

Question a) By considering a sequence of throws we get

P (1) = 0

P (2) =
1

6

P (3) =
5

6

2

6

P (4) =
5

6

4

6

3

6

P (5) =
5

6

4

6

3

6

4

6

P (6) =
5

6

4

6

3

6

2

6

5

6

P (7) =
5

6

4

6

3

6

2

6

1

6

Question b) The sum of the probabilities p2 to p6 must be one, thus the sum in
question is 1.

Question c) Can be seen immediately.
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Solution for exercise 1.6.7 in Pitman

Question a) The exercise is closely related to example 7 p.68. Using the same nota-
tion and approach

P (Current flows) = P ((S1 ∪ S2) ∩ S3) = (1− P (Sc1 ∩ Sc2))P (S3) = (1− q1q2)q3

(use 1 = p1p2 + q1p2 + p1q2 + q1q2 to get the result in Pitman)

Question b)

P (Current flows) = P (((S1 ∪ S2) ∩ S3)cupS4) = 1− (1− q1q2)q3q4

(or use exclusion/inclusion like Pitman)
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Solution for exercise 1.6.8 in Pitman

question a) The events Bij occur with probability

P (Bij) =
1

365

It is immediately clear that

P (B12 ∩B23) =
1

3652
= P (B12)P (B23).

implying independence. The following is a formal and lengthy argument. Define

Aij as the the event that the i’th person is born the j’th day of the year.

We have P (Aij) = 1
365

and that A1i , A2,j, A3,k, and A4,l are independent. The
event Bij can be expressed by

Bij = ∪365
k=1 (Ai,k ∩ Aj,k)

such that P (Bij) = 1
365

by the independence of Ai,k and Aj,k. The event B12∩B23

can be expressed by

B12 ∩B23 = ∪365
k=1 (A1,k ∩ A2,k ∩ A3,k)

and by the independence of the A’s we get P (B12 ∩B23) = 1
3652

question b) The probability

P (B13|B12 ∩B23) = 1 6= P (B13)

thus, the events B12, B13, B23 are not independent.

question c) Pairwise independence follows from a)
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Solution for exercise 2.1.1 in Pitman

Question a) We use the formula for the number of combinations - appendix 1, page
512 (the binomial coefficient)

(
7
4

)
=

(
7
3

)
=

7!

4!3!
=

7 · 6 · 5
3 · 2 · 1 = 35

Question b) The probability in question is given by the binomial distribution, see eg.
page 81.

35

(
5

6

)3(
1

6

)4

=
35 · 125

67
= 0.0156
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Solution for exercise 2.1.2 in Pitman

We define the events Gi: i girls in family. The probabilities P (Gi) is given by the
binomial distribution due to the assumptions that the probabilities that each child is
a girl do not change with the number or sexes of previous children.

P (Gi) =

(
4
i

)
1

2

i1

2

4−1

, P (G2) = 6 · 1

16
=

3

8

P (G2c) = 1− P (G2) =
5

8
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Solution for exercise 2.1.4 in Pitman

We denote the event that there are 3 sixes in 8 rolls by A, the event that there are 2
sixes in the first 5 rolls by B. The probability in question is P (B|A). Using the general
formula for conditional probabilities page 36

P (B|A) =
P (B ∩ A)

P (A)

The probability P (B ∩A) = P (A|B)P (B) by the multiplication rule, thus as a speical
case of Bayes Rule page 49 we get

P (B|A) =
P (B ∩ A)

P (A)
=
P (A|B)P (B)

P (A)

Now the probability of P (A) is given by the binomial distribution page 81, as is P (B)
and P (A|B) (the latter is the probability of getting 1 six in 3 rolls). Finally

P (B|A) =
P (2 sixes in 5 rolls)P (1 six in 3 rolls)

P (3 sixes in 8 rolls)
=

(
5
2

)
53

65

(
3
1

)
52

63

(
5
2

)
55

68

=

(
5
2

)(
3
1

)

(
8
3

)

a hypergeometric probability. The result generalizes. If we have x successes in n trials
then the probability of having y ≤ x successes in m ≤ n trials is given by

(
m
y

)(
n−m
x− y

)

(
n
x

)

The probabilities do not depend on p.
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Solution for exercise 2.1.6 in Pitman

We define events Bi that the man hits the bull’s eye exactly i times. The probabilities
of the events Bi is given by the Binomial distribution

P (Bi) =

(

8
i

)

0.7i0.38−i

Question a) The probability of the event

P (B4) =
8 · 7 · 6 · 5

4 · 3 · 2 · 1
0.740.34 = 0.1361

Question b)

P (B4| ∪8

i=2
Bi) =

P ((B4 ∩ (∪8

i=2
Bi))

P (∪8

i=2
Bi)

=
P (B4)

1 − P (B0) − P (B1)
== 0.1363

Question c)
(

6
2

)

0.720.34 = 0.0595
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Solution for exercise 2.2.1 in Pitman

All questions are answered by applying The Normal Approximation to the Binomial

Distribution page 99 (131). We have µ = n ·p = 400 · 1
2

= 200, σ =
√
npq =

√
4001

2
1
2

=

10. The questions differ only in the choice of a and b in the formula.

Question a) a = 190, b = 210

P (190 to 210 successes) = Φ

(
210.5− 200

10

)
− Φ

(
189.5− 200

10

)

= Φ(1.05)− Φ(−1.05) = 0.8531− (1− 0.8531)0.7062

Question b) a = 210, b = 220

P (210 to 220 successes) = Φ

(
220.5− 200

10

)
− Φ

(
209.5− 200

10

)

= Φ(2.05)− Φ(0.95) = 0.9798− 0.8289 = 0.1509

Question c) a = 200, b = 200

P (200 successes) = Φ

(
200.5− 200

10

)
− Φ

(
199.5− 200

10

)

= Φ(0.05)− Φ(−0.05) = 0.5199− (1− 0.5199) = 0.0398

Question d) a = 210, b = 210

P (210 successes) = Φ

(
210.5− 200

10

)
− Φ

(
209.5− 200

10

)

= Φ(1.05)− Φ(0.95) = 0.8531− 0.8289 = 0.0242
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Solution for exercise 2.2.4 in Pitman

We apply The Normal Approximation to the Binomial Distribution page 99. Note
that b=̃∞ such that the first term is 1. We have µ = n · p = 300 · 1

3
= 100 and

σ =
√

3001
3

2
3

= 10
√

2
3
. The value of a in the formula is 121 (more than 120). We get

P (More than 120 patients helped = 1−Φ

(
120.5− 100

8.165

)
= 1−Φ(2.51) = 1−0.994 = 0.006
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Solution for exercise 2.2.14 in Pitman

Question a) We define the events Wi that a box contains i working devices. The
probability in question can be established by

−P (W390∪W391∪W392∪W393∪W394∪W395∪W396∪W397∪W398∪W399∪W400)

= P (W390)+P (W391)+P (W392)+P (W393)+P (W394)+P (W395)+P (W396)+P (W397)+P (W398)+P (W399)+P (W400)

since the event Wi are mutually exclusive. The probabilities P (Wi) are given by
the binomial distribution

P (i) =

(
400
i

)
0.95i0.05400−i,

we prefer to use the normal approximation, which is

1−P (less than 390 working)=̃1−Φ

(
390− 1

2
− 400 · 0.95√

400 · 0.95 · 0.05

)
= 1−Φ(2.18) = 1−0.9854 = 0.0146

Without continuity correction we get 1−Φ(2.29) = 0.0110 The skewness correc-
tion is:

−1

6

1− 2 · 0.95√
400 · 0.95 · 0.95

(2.182 − 1)
1√
2π
e−

1
2

2.182

= 0.0048

The skewness correction is quite significant and should be applied. Finally we
approximate the probability in question with 0.00098, which is still somewhat
different from the exact value of 0.0092.

Question b)

P (at least k)=̃1− Φ

(
k + 1

2
− 400 · 0.95√

400 · 0.95 · 0.05

)
≥ 0.95

With
k + 1

2
− 400 · 0.95√

400 · 0.95 · 0.05
≤ −1.645

we find k = 373.
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Solution for exercise 2.4.7 in Pitman

Question a) From page 90 top we know that m is the largest integer less than equal
to (n+ 1) · p = 2.6, thus m = 2.

Question b) (
25
2

)
0.120.923 = 0.2659

Question c)

Φ

(
2 + 1

2
− 2.5√

25 · 0.09

)
− Φ

(
1 + 1

2
− 2.5√

25 · 0.09

)
= Φ(0)− Φ(−0.667) = 0.2475

Question d)
2.52

2!
· e−2.5 = 0.2566

Question e) Normal m is now 250

Φ

(
250 + 1

2
− 250√

2500 · 0.09

)
− Φ

(
250− 1

2
− 250√

2500 · 0.09

)
= Φ(

1

30
)− Φ(− 1

30
) = 0.0266

Question f) Poisson - as above 0.2566.
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Solution for exercise 2.4.8 in Pitman

The Poisson probabilities Pµ(k) are

Pµ(k) =
µk

k!
e−µ

We use odds ratio for the probabilities

P (k + 1)

P (k)
=

µk+1

(k+1)!
e−µ

µk

k!
e−µ

=
µ

k + 1

The ratio is strictly decreasing in k. For µ < 1 maximum will be Pµ(0), otherwise the
probabilities will increase for all k such that µ > k, and decrease whenever µ < k. For
non-integer µ the maximum of Pµ(k) (the mode of the distribution) is obtained for the
largest k < µ. For µ intger the value of Pµ(µ) = Pµ(µ+ 1).
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Solution for exercise 2.4.10 in Pitman

The probability of the event that there is at least one success can be calculated using
the Binomial distribution. The probability of the complentary event that there is no
successes in n trials can be evaluated by the Poisson approximation.

P (0) = e−
1
N

2
3
N = 0.5134

Similarly for n = 5
3
N

P (0) + P (1) = e−
1
N

5
3
N

(
1 +

5

3

)
= 0.5037
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Solution for exercise 2.5.1 in Pitman

Question a) We use the hypergeometric distribution page 125 since we are dealing
with sampling without replacement

P (Exactly 4 red tickets) =

(
20
4

)(
30
6

)

(
50
10

)

Question b) We apply the binomial distribution (sampling with replacement page
123)

P (Exactly 4 red tickets) =

(
10
4

)(
20

50

)4(
30

50

)6

= 210
2436

510
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Solution for exercise 2.5.9 in Pitman

Question a) The probability that the second sample is drawn is the probability that
the first sample contains exactly one bad item, which occurs with probability

p1 =

(
10
1

)(
40
4

)

(
50
5

)

(the hypergeometric distribution page 125). The probability that the second
sample contains more than one bad item is calculated via the probability of the
complementary event, i.e. that the second sample contains one or two bad items,
which is

p2 =

(
9
0

)(
36
10

)

(
45
10

) +

(
9
1

)(
36
9

)

(
45
10

)

The answer to the question is the product of these two probabilities p1(1− p2) =
0.2804.

Question b) The lot is accepted if we have no bad items in the first sample or the
event described under a)

(
10
0

)(
40
5

)

(
50
5

) +

(
10
1

)(
40
4

)

(
50
5

)




(
9
0

)(
36
10

)

(
45
10

) +

(
9
1

)(
36
9

)

(
45
10

)


 = 0.4595
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Solution for exercise 3.1.5 in Pitman

The random variable Z = X1X2 has range {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 36}.
We find the probability of Z = i by counting the combinations of X1, X2 for which
X1X2 = i. we get:

Z = i P (Z = i)
1 1

36

2 2
36

3 2
36

4 3
36

5 2
36

6 4
36

8 2
36

9 1
36

10 2
36

12 4
36

15 2
36

16 1
36

18 2
36

20 2
36

24 2
36

25 1
36

30 2
36

36 1
36
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Solution for exercise 3.1.14 in Pitman

Question a) We define the events Gg as the the events that team A wins in g games.
The probabilities P (Gg) can be found by thinking of the game series as a sequence
of Bernoulli experiments. The event Gg is the event that the fourth succes (win
by team A) occurs at game g. These probabiliites are given by the negative bino-
mial distribution (page 213 or page 482). Using the notation of the distribution
summary page 482, we identify r = 4, n = g − 4 (i.e. counting only the games
that team A loses). We get

P (Gg) =

(
g − 1
4− 1

)
p4qg−4 g = 4, 5, 6, 7

Question b)

p4

7∑

g=4

(
g − 1

3

)
qg−4

Question c) The easiest way is first answering question d) then using 1−binocdf(3, 7, 2/3)
in MATLAB.

0.8267

Question d) Imagine that all games are played etc. From the binomial formula

p7 + 7p6q + 21p5q2 + 35p4q3 = p7 + p6q + 6p6q + 6p5q2 + 15p5q2 + 35p4q3

= p6 + 6p5q + 15p4q2 + 20p4q3 = p6 + p5q + 5p5q + 15p4q2 + 20p4q3

etc.

Question e)
P (G = 4) = p4 + q4 P (G = 5) = 4pq(p3 + q3)

P (G = 6) = 10p2q2(p2 + q2) P (G = 7) = 20p3q3(p+ q)

Independence for p = q = 1
2
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Solution for exercise 3.1.16 in Pitman

Question a) Using the law of averaged conditional probabilities we get

P (X+Y = n) =
n∑

i=0

P (X = i)P (X+Y = n|X = i) =
n∑

i=0

P (X = i)P (Y = n−i)

where the last equality is due to the independence of X and Y .

Question b) The marginal distribution of X and Y is

P (X = 2) =
1

36
, P (X = 3) =

1

18
, P (X = 4) =

1

12

P (X = 5) =
1

9
, P (X = 6) =

5

36
, P (X = 7) =

1

6

We get

P (X + Y = 8) = 2

(
· 1

36
· 5

36
+

1

18

1

9

)
+

1

12
· 1

12
=

35

16 · 81
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Solution for exercise 3.1.24 in Pitman

Question a) We define P (X even) = P (Y even) = p, and introduce the random
variable W = X + Y . The probability pw of the event that W is even is

pw = p2 + (1− p)(1− p) = 2p2 + 1− 2p = (1− p)2 + p2

with minimum 1
2

for p = 1
2
.

Question b) We introduce p0 = P (X mod 3 = 0), p1 = P (X mod 3 = 1), p2 =
P (X mod 3 = 2). The probability in question is

p3
0 + p3

1 + p3
2 + 3p0p1p2

which after some manipulations can be written as

1− (p0p1 + p0p2 + p1p2 − 3p0p1p2)

The expressions can be maximized/minimized using standard methods, I haven’t
found a more elegant solution than that.
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Solution for exercise 3.2.3 in Pitman

Question a) Let X define the number of sixes appearing on three rolls. We find

P (X = 0) =
(

5
6

)3
, P (X = 1) = 352

63 , P (X = 2) = 3 5
63 , and P (X = 3) = 1

63 .
Using the definition of expectation page 163

E(X) =
3∑

x=0

x¶(X = x) = 0 ·
(

5

6

)3

+ 1 · 352

63
+ 2 · 3 5

63
+ 3 · 1

63
=

1

2

or realizing that X ∈ binomial
(
3, 1

6

)
example 7 page 169 we have E(X) = 3 · 1

6
=

1
2
.

Question b) Let Y denote the number of odd numbers on three rolls, then Y ∈
binomial

(
3, 1

2

)
thus E(Y ) = 3 · 1

2
= 3

2
.
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Solution for exercise 3.2.7 in Pitman

We define the indicator variables Ii which are 1 of switch i are closed 0 elsewhere. We
have X = I1 + I2 + · · ·+ In, such that

E(X) = E(I1 +I2 + · · ·+In) = E(I1)+E(I2)+ · · ·+E(In) = p1 +p2 + · · ·+pn =
n∑

i=0

pi







1

IMM - DTU 02405 Probability

2003-10-12
BFN/bfn

Solution for exercise 3.2.17 in Pitman

Question a) The event D ≤ 9 occurs if all the red balls are among the first 9 balls
drawn. The probability of this event is given by the Hypergeometric distribution
p. 125 and 127.

P (D ≤ 9) =

(
3
3

)(
10
6

)

(
13
9

) = 0.2937

Question b)

P (D = 9) = P (D ≤ 9)−P (D ≤ 8) =

(
3
3

)(
10
6

)

(
13
9

) −

(
3
3

)(
10
5

)

(
13
8

) = 0.2284

Question c) To calculate the mean we need the probabilities of P (D = i) for i =
3, 4, . . . , 13. We get

P (D ≤ i) =

(
3
3

)(
10
i− 3

)

(
13
i

) =

(
10
i− 3

)

(
13
i

) =

10!
(13−i)!(i−3)!

13!
(13−i)!i!

=
10!i!

13!(i− 3)!
=
i(i− 1)(i− 2)

13 · 12 · 11

P (D = i) = P (D ≤ i)−P (D ≤ i−1) =
i(i− 1)(i− 2)

13 · 12 · 11
−(i− 1)(i− 2)(i− 3)

13 · 12 · 11
=

3(i− 1)(i− 2)

13 · 12 · 11

E(D) =
12∑

i=3

i
3(i− 1)(i− 2)

13 · 12 · 11
=

3

13 · 12 · 11

12∑

i=3

i(i−1)(i−2) =
3

13 · 12 · 11
6, 006 = 10.5









1

IMM - DTU 02405 Probability

2003-10-2
BFN/bfn

Solution for exercise 3.3.4 in Pitman

The computational formula for the variance page 186 is quite useful (important). This
exercise is solved by applying it twice. First we use it once to get:

V ar(X1X2) = E((X1X2)2)− (E(X1X2))2

Now by the independence of X1 and X2

E((X1X2)2)−(E(X1X2))2 = E(X2
1X

2
2 )−(E(X1)E(X2))2 = E(X2

1 )E(X2
2 )−(E(X1)E(X2))2

using the multiplication rule for Expectation page.177 valid for independent random
variables. We have also used the fact that if X1 and X2 are independent then f(X1)
and g(X2) are independent too, for arbitrary functions f() and g(). We now use the
computational formula for the variance once more to get

V ar(X1X2) = (V ar(X1) + (E(X1))2)(V ar(X2) + (E(X2))2)− (E(X1)E(X2))2

Now inserting the symbols of the exercise we get

V ar(X1X2) = σ2
1σ

2
2 + µ2

1σ
2
2 + µ2

2σ
2
1
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Solution for exercise 3.3.19 in Pitman

We apply the Normal approximation (the Central Limit Theorem (p.196). Let Xi

denote the weight of the i’th passenger. The total load W is W =
∑30

i=1 Xi.

P (W > 5000)=̃1− Φ

(
5000− 30 · 150

55
√

30

)
= 1− Φ(1.66) = 0.0485
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Solution for exercise 3.3.23 in Pitman

We define Sn as the time of installment of the n’th battery. Similarly we define Nt to be
the number of batteries replaced in the interval [0, t(. We have P (Sn ≤ t) = P (Nt ≥ n),
thus P (N104 ≥ 26) = P (S26 ≤ 104) where the time unit is weeks. We now apply the
Normal approximation (Central Limit Theorem) to S26.

P (S26 ≤ 104)=̃Φ

(
104− 26 · 4

1 ·
√

104

)
= 0.5
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Solution for exercise 3.4.2 in Pitman

First we restate D : number of balls drawn to get two of the same colour. We draw
one ball which is either red or black. Having drawn a ball of some colour the number
of draws to get one of the same colour is geometrically distributed with probability 1

2
.

Thus D = X + 1 where X is geometrically distributed with p = 1
2
.

Question a)
P (D = i) = p(1− p)i−2, p = 2, 3, . . .

Question b)

E(D) = E(X + 1) = E(X) + 1 =
1

p
+ 1 = 3

from page 212 or 476,482.

Question c)

V (D) = V (X + 1) = V (X) =
1− p
p2

= 2, SD(D) =
√

2

from page 213 or 476,482.
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Solution for exercise 3.4.9 in Pitman

We define the random variable N as the number of throws to get heads. The pay back
value is N 2, the expected win from the game can be expressed as

E(N 2 − 10) = E(N 2)− 10

using the rule for the expectation of a linear function of a random variable p. 175
b. We could derive E(N 2) from the general rule for expectation of a function of a
random variable p. 175 t. However, it is more convenient to use the fact the N follows
a Geometric distribution and use the Computational Formula for the Variance p. 186.

E(N 2) = V ar(N) + (E(N))2 =
1− p
p2

+

(
1

p

)2

= 2 + 4 = 6

The values for V ar(N) and E(N) can be found p. 476 in the distribution summary.
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Solution for exercise 3.5.13 in Pitman

Question a) Using the Poisson Scatter Theorem p.230 we get

µ(x) = x3 6.023 · 1023

22.4 · 103
= 2.688 · 1019x3

and
σ(x) =

√
µ(x) = 5.1854 · 109x

√
x

Question b)
5.1854 · 109x

√
x

2.688 · 1019x3
≥ 0.01→ x ≤ 7.1914 · 10−6
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Solution for exercise 3.5.16 in Pitman

We assume that the chocolate chips and mashmallows are randomly scattered in the
dough.

Question a) The number of chocoloate chips in one cubic inch is Poisson distributed
with parameter 2 according to our assumptions. The number of chocolate chips
in thre cubic inches is thus Poisson distributed with parameter 6. Let X denote
the number of chocolate chops in a three cubic inch cookie.

P (X ≤ 4) = e−6

(
1 + 6 +

36

2
+

36 · 6
6

+
216 · 6
4 · 6

)
= 115 · e−6 = 0.285

Question b) We have three Poisson variates Xi : total number of chocolate chips and
marshmallows in cookie i. According to our assumptions, X1 follows a Poisson
distribution with parameter 6, while X2 and X3 follow a Poisson distribution
with parameter 9. The complementary event is the event that we get two or
three cookies without chocoloate chips and marshmallows.

P (X1 = 0, X2 = 0, X3 = 0) + P (X1 > 1, X2 = 0, X3 = 0)

+P (X1 = 0, X2 > 1, X3 = 0) + P (X1 = 0, X2 = 0, X3 > 1)

= e−6e−9e−9 + (1− e−6)e−9e−9 + e−6(1− e−9)e−9 + e−6e−9(1− e−9)=̃0

we are almost certain that we will get at most one cookie without goodies.
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Solution for exercise 3.5.18 in Pitman

Question a) The variable X1 is the sum of a thinned Poisson variable (X0) and a
Poisson distributed random variable (the immigration). The two contributions
are independent, thus X1 is Poisson distributed. The same argument is true for
any n and we have proved that Xn is Poisson distributed by induction. Ee denote
the parameter of the n’th distribution by λn. We have the following recursion:

λn == pλn−1 + µ

with λ0 = µ such that
λ1 = (1 + p)µ

and more generally

λn =
n∑

i=0

piµ = µ
1− pn+1

1− p

Question b) As n→∞ we get λn → µ
1−p . This value is also a fixpoint of

λn == pλn−1 + µ
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Solution for exercise 4.1.4 in Pitman

Question a) The integral of f(x) over the range of X should be one (see e.g. page
263). ∫ 1

0

x2(1− x)2dx =

∫ 1

0

x2

(
2∑

i=0

(
2
i

)
(−x)i

)
dx

using the binomial formula (a+ b)n =
∑n

i=0

(
n
i

)
aibn−i.

∫ 1

0

x2

(
2∑

i=0

(
2
i

)
(−x)i

)
dx =

2∑

i=0

(
2
i

)∫ 1

0

(−x)i+2dx =
2∑

i=0

(
2
i

)
(−1)i

[
xi+3

i+ 3

]x=1

x=0

=
1

30

such that
f(x) = 30 · x2(1− x)2 0 < x < 1

This is an example of the Beta distribution page 327,328,478.

Question b) We derive the mean

∫ 1

0

xf(x)dx =

∫ 1

0

x30·x2

(
2∑

i=0

(
2
i

)
(−x)i

)
dx = 30

2∑

i=0

(
2
i

)
(−1)i

[
xi+4

i+ 4

]x=1

x=0

=
1

2

which we could have stated directly due to the symmetry of f(x) around 1
2
, or

from page 478.

Question c) We apply the computational formula for variances as restated page 261.

V ar(X) = E(X2)− (E(X))2

E(X2) =

∫ 1

0

x230·x2

(
2∑

i=0

(
2
i

)
(−x)i

)
dx = 30

2∑

i=0

(
2
i

)
(−1)i

[
xi+5

i+ 5

]x=1

x=0

=
30

105

such that

V ar(X) =
30

105
− 1

4
=

1

28

which can be verified page 478.

SD(X3,3)2 =
3 · 3

(3 + 3)2(3 + 3 + 1)
=

1

28
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Solution for exercise 4.1.5 in Pitman

Question a)

Question b) We apply the formula on page 263 for a density

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

We get

P (−1 ≤ X ≤ 2) =

∫ 2

−1

1

2(1 + |x|)2
dx =

∫ 0

−1

1

2(1− x)2
dx+

∫ 2

0

1

2(1 + x)2
dx

=

[
1

2(1− x)

]x=0

x=−1

+

[
− 1

2(1 + x)

]x=2

x=0

=
1

2
− 1

4
+

1

2
− 1

6
=

7

12

Question c) The distribution is symmetric so P (|X| > 1) = 2P (X > 1) = 2
[
− 1

2(1+x)

]x=∞

x=1
=

1
2
.

Question d) No. (the integral
∫∞

0
x 1

2(1+x)2 dx does not exist).
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Solution for exercise 4.1.9 in Pitman

We first determine S4 and V ar(S4). From the distribution summary page 477 we have
E(S4) = 41

2
= 2 and due to the independence of the Xi’s we have V ar(S4) = 4 1

12
= 1

3
.

(the result from the variance follows from the result page 249 for a sum of independent
random variables and the remarks page 261 which states the validity for continuous
distributions). We now have

P (S4 ≥ 3) = 1− Φ


3− 2√

1
3


 = 1− Φ(1.73) = 1− 0.9582 = 0.0418
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Solution for exercise 4.1.13 in Pitman

Question a) We derive the density of the distribution

f(x) =

{
c(x− 0.9) 0.9 < x ≤ 1.0
c(1− x) 1.0 < x < 1.1

We can find c the standard way using
∫ 1.1

0.9
f(x)dx = 1. However, we can derive

the area of the triangle directly as 1
2
· 0.02 · c such that c = 100. Due to the

symmetry of f(x) we have P (X < 0.925) = P (1.075 < X).

P (rod scrapped) = 2P (X < 0.925) = 2

∫ 0.925

0.9

10(x−0.9)dx = 20

[
1

2
x2 − 0.9x

]x=0.925

x=0.9

= 0.0625

Question b) We define the random variable Y as the length of an item which has
passed the quality inspection. The probability

P (0.95 < Y < 1.05) =
P (0.95 < X < 1.05)

P (0.925 < X < 1.075)
=

0.75

0.9375
= 0.8

The number of acceptable items A out of c are binomially distributed. We de-
termine c such that

P (A ≥ 100) ≥ 0.95

We now use the normal approximation to get

1− Φ

(
100− 0.5− 0.8 · c

0.4
√
c

)
≥ 0.95

100− 0.5− 0.8 · c
0.4
√
c

≤ −1.645

and we find c ≥ 134.
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Solution for exercise 4.2.4 in Pitman

Question a) We define Ti as the lifetime of component i. The probability in question
is given by the Exponential Survival Function p.279. The mean is 10hours, thus
λ = 0.1h−1.

P (Ti > 20) = e−0.1·20 = e−2 = 0.1353

Question b) The problem is similar to the determination of the half life of a radioac-
tive isotope Example 2. p.281-282. We repeat the derivation

P (Ti ≤ t50%) = 0.5⇔ e−λt50% = 0.5 t50% =
ln 2

λ
= 6.93

Question c) We find the standard deviation directly from page 279

SD(Ti) =
1

λ
= 10

Question d) The average life time T̄ of 100 components is

T̄ =
1

100

100∑

i=1

Ti

We know from page 286 that T̄ is Gamma distributed. However, it is more
convenient to apply CLT (Central Limit Theorem) p.268 to get

P (T̄ > 11) = 1− P (T̄ ≤ 11)=̃1− Φ

(
11− 10

10√
100

)
= 1− Φ(1) = 0.1587

Question e) The sum of the lifetime of two components is Gamma distributed. From
p.286 (Right tail probability) we get

P (T1 + T2 > 22) = e−0.1·22(1 + 2.2) = 0.3546
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Solution for review exercise 1 (chapter 1) in Pitman

Solution for exercise 4.2.5 in Pitman

Question a) The time between two calls in a Poisson process is exponentially dis-
tributed (page 289). Using the notation of page 289 with � = 1 we get

P (W4 � 2) = 1� e�2 = 0:8647

Question b) The distribution of the time to the arrival of the fourth call is a Gamma
(4; �) distribution. We �nd the probability using the result (2) on page 286

P (T4 � 5) = 1� e�5
�
1 + 5 +

25

2
+

125

6

�
= 1�

118

3
e�5 = 0:735

Question c)

E(T4) =
4

�
= 4

using (3) page 286.
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Solution for exercise 4.2.10 in Pitman

Question a) We define T1 =
∫

(T ) such that

P (T1 = 0) = 1− P (T > 1) = 1− e−λ

using the survival function for an exponential random variable. Correspondingly

P (K = k) = P (T > k)−P (T > k+1) = e−λk−e−λ(k+1) = e−λk
(
1− e−λ

)
=
(
e−λ
)k (

1− e−λ
)

a geometric distribution with parameter p = 1− e−λ.

Question b)

P (Tm = k) = P (T >
k

m
)−P (T >

k + 1

m
) = e−λ

k
m−e−λ k+1

m =
(
e−

λ
m

)k (
1− e− λ

m

)

pm = e−
λ
m .

Question c) The mean of the geometric distribution of Tm is

E(Tm) =
1− pm
pm

The mean is measured in 1
m

time units so we have to multiply with this fraction
to get an approximate value for E(T )

E(T )=̃ =
1

m
E(Tm) =

1− pm
pm

=
1

m

e−
λ
m

1− e− λ
m

=
1

m

1− λ
m

+ o
(
λ
m

)

1−
(
1− λ

m
+ o

(
λ
m

)) → 1

λ
for m→ infty
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Solution for exercise 4.3.4 in Pitman

The relation between the hazard rate λ(t) and the survival function G(t) is given by
(7) page 297

G(t) = e−
∫ t
0 λ(u)du

Now inserting λ(u) = λαuα−1

G(t) = e−
∫ t
0 λαu

α−1du = e−λ[uα]u=t
u=0 = e−λt

α

Similarly we derive f(t) from G(t) using (5) page 297

f(t) = −dG(t)

dt
= −e−λtα

(
−λαtα−1

)
= λαtα−1e−λt

α

Finally from (6) page 297

λ(t) =
λαtα−1e−λt

α

e−λtα
= λαtα−1









1

IMM - DTU 02405 Probability

2003-10-15
BFN/bfn

Solution for exercise 4.4.3 in Pitman

First we introduce Y = g(U) = U 2 and note that g() is strictly increasing on ]0, 1[. We
then apply the formula in the box on page 304. In our case we have

fX(x) = 1 for 0 < x < 1, y = g(x) = x2, x =
√
y,

dy

dx
= 2x = 2

√
y

Inserting in the formula

fY (y) =
1

2
√
y

0 < y < 1

Alternative solution using cumulative distribution - section 4.5

FU2(y) = P (U2 ≤ y) = P (U ≤ √y) =
√
y

The last equality follows from the cumulative distribution function (CDF) of a Uni-
formly distributed random variable (page 487). The density is derived from the CDF
by differentation (page 313) and

fU2(y) =
dFU2(y)

dy
=

1

2
√
y
, 0 < y < 1
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Solution for exercise 4.4.6 in Pitman

We have
tan (Φ) = y

and use the change of variable result page 304 to get

dtan (Φ)

dΦ
= 1 + tan (Φ)2 = 1 + y2

Now inserting into the formula page 304 we get

fY (y) =
1

π

1

1 + y2
,−∞ < y <∞

The function is symmetric (fY (y) = fY (−y)) since (−y)2 = y2, but

∫ a

0

y · 1

π

1

1 + y2
dy =

1

2π
ln (1 + a2)→∞ for a→∞

The integral
∫∞
−∞ yfY (y)dy has to converge absolutely for E(Y ) to exist, i.e. E(Y )

exists if and only if E(|Y |) exists (e.g. page 263 bottom).
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Solution for exercise 4.5.4 in Pitman

The operations considered are shifting (addition of b) and scaling (multiplication by
a). We introduce Y = aX + b. The distribution FY (y) of Y is given by

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P (aX ≤ y − b)

For a > 0 we get

FY (y) = P

(
X ≤ y − b

a

)
= F

(
y − b
a

)

For a < 0 we get

FY (y) = P

(
X ≥ y − b

a

)
= 1− P

(
X ≤ y − b

a

)
= 1− F

(
y − b
a

)
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Solution for exercise 4.5.7 in Pitman

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the
inverse problem in a special case. We apply the standard change of variable
method page 304

Y =
√
T , T = Y 2,

dy

dt
=

1√
t

fY (y) = 2λ · ye−λy2

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page
310.

Question b) ∫ ∞

0

2λy2e−λy
2

dy =

∫ ∞

−∞
λy2e−λy

2

dy

We note the similarity with the variance of an unbiased (zero mean) normal
variable.

∫ ∞

−∞
λy2e−λy

2

dy = λ

∫ ∞

−∞
y2

√
2π

2π

√
1

2λ
1

2λ

e
− 1

2
y2

1
2λ dy = λ

√
π

λ

∫ ∞

−∞
y2 1√

2π

1
1√
2λ

e
− 1

2
y2

1
2λ dy

the integral is the expected value of Z2, where Z is normal
(
0, 1

2λ

)
distributed.

Thus the value of the integral is 1
2λ

Finally we get

E(Y ) =
√
λπE(Z2) =

√
λπV ar(Z)

=
√
λπ

1

2λ
==

1

2

√
π

λ
= 0.51 with λ = 3

Question c) We apply the inverse distribution function method suggested page 320-
323. Thus

U = 1− e−λX ⇒ X = −1

λ
ln (1− U)

Now 1−U and U are identically distributed such that we can generate an expo-
nential X with X = − 1

λ
ln (U). To generate a Weibull (α = 2) distributed Y we

take the square root of X, thus Y =
√
− 1
λ

ln (1− U).
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Solution for exercise 4.5.8 in Pitman

We let Xi denote the lifetime of the i’th component, and S denote the lifetime of the
system.

Question a) We have the maximum of two exponential random variables S = max (X1, X2).

P (S ≤ t) = P (max (X1, X2) ≤ t) =
(
1− e−λ1t

) (
1− e−λ2t

)

from page 316 and example 4 page 317/318. Thus

P (S > t) = 1−
(
1− e−λ1t

) (
1− e−λ2t

)
= e−λ1t + e−λ2t − e−(λ1+λ2)t

Question b) In this case we have S = min(X1, X2) and we apply the result for the
minimum of random variables page 317. The special case of two exponentials is
treated in example 3 page 317

P (S ≤ t) = 1− e−(λ1+λ2)t

Question c) From the system design we deduce S = max (min (X1, X2),min (X3, X4))
such that

P (S ≤ t) =
(
1− e−(λ1+λ2)t

) (
1− e−(λ3+λ4)t

)

Question d) Here S = min (max (X1, X2), X3) such that

P (S ≤ t) = 1−
(
1−

(
1− e−λ1t

) (
1− e−λ2t

))
e−λ3t = 1−e−(λ1+λ3)t−e−(λ2+λ3)t+e−(λ1+λ2+λ3)t
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Solution for exercise 4.6.3 in Pitman

Question a)

P (U(1) ≥ x, U(n) ≤ y) = P (x ≤ U1 ≤ y, x ≤ U2 ≤ y, . . . x ≤ Un ≤ y) = (y − x)n

Question b)

P (U(1) ≥ x, U(n) > y) = P (U(1) ≥ x)−P (U(1) ≥ x, U(n) ≤ y) = (1−x)n− (y−x)n

Question c)

P (U(1) ≤ x, U(n) ≤ y) = P (U(n) ≤ y)− P (U(1) ≥ x, U(n) ≤ y) = yn − (y − x)n

Question d)
1− (1− x)n − yn + (y − x)n

Question e) (
n
k

)
xk(1− y)n−k

Question f)
k < x, n− k − 1 > y

one in between
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Solution for exercise 4.6.5 in Pitman

Question a) The probability P (Xi ≤ x) = x since Xi is uniformly distributed. The
number Nx of Xi’s less than or equal to x follows a binomial distribution bin(n, x)
since the Xi are independent. The event {X(k) ≤ x} corresponds to {Nx ≥ k}.
We get

P (X(k) ≤ x) = P (Nx ≥ k) =
n∑

i=k

(
n
i

)
xi(1− x)n−i

Question b) From the boxed result at the bottom of page 327 we have that (X(k) has
beta(k, n− k + 1) distribution. Substituting r = k and s = n− k + 1 we get

P (X(k) ≤ x) =
r+s−1∑

i=r

(
r + s− 1

i

)
xi(1− x)s+r−i−1

which is the stated result.

Question c) The beta(r, s) density is

f(x) =
1

B(r, s)
xr−1(1− x)s−1 =

1

B(r, s)
xr−1

s−1∑

i=0

(
s− 1
i

)
(−x)i

Now

P (X(k) ≤ x) =

∫ x

0

f(x)dx =

∫ x

0

1

B(r, s)
ur−1

s−1∑

i=0

(
s− 1
i

)
(−u)idu

=
1

B(r, s)

s−1∑

i=0

∫ x

0

(
s− 1
i

)
(−u)r+i−1du =

xr

B(r, s)

s−1∑

i=0

(
s− 1
i

)
(−x)i

r + i

as was to be proved.
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Solution for exercise 5.1.4 in Pitman

Question a) This is Example 3 page 343 with different numbers

P (|Y −X| ≤ 0.25) = 1− 2
1

2

(
3

4

)2

=
7

16

Question b) We see that the probability can be rewritten This is example 2 page 343
with different values. We get

1− 1

2

3

4
− 1

2

4

5
=

9

40

Question c)

P (Y ≥ X|Y > 0.25) =
P (Y ≥ X,Y > 0.25)

P (Y > 0.25)
=
P (Y ≥ X)− P (Y ≥ X,Y ≤ 0.25)

P (Y > 0.25)

=
1
2
− 1

2

(
1
4

)2

3
4

=
5

8
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Solution for exercise 5.1.5 in Pitman

We note that the percentile U of a randomly chosen student is uniformly(0, 1) dis-
tributed.

Question a)
P (U > 0.9) = 1− P (U ≤ 0.9) = 0.9

Question b) The question is Example 3 page 343 the probability of a meeting with
different parameters. Denoting U1 and U2 respectively as the rank of the two
students

P (|U1 − U2| > 0.1) = 0.92 = 0.81
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Solution for exercise 5.2.7 in Pitman

We denote the radius of the circle by ρ. The are of the circle is πρ2. If a chosen point
is within radius r it has to be within the circle of radius r with area πr2. We find the
probability as the fraction of these two areas

FR(r) = P (R1 ≤ r) =
r2

ρ2

with density (page 333)

fR(r) =
dFR(r)

dr
=

2r

ρ2

With R1 and R2 indpendent we have the joint density from (2) page 350

f(r1, r2) =
4r1r2

ρ4

We now integrate over the set r2 <
r1
2

(page 349) to get

P

(
R2 ≤

R1

2

)
=

∫ ρ

0

∫ r1
2

0

4r1r2

ρ4
dr2dr1 =

1

2ρ4

∫ ρ

0

r3
1dr1 =

1

8
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Solution for exercise 5.2.8 in Pitman

Question a) We find the marginal density of Y by integrating over x (page 349)

fY (y) =

∫ y

−y
c(y2 − x2)e−ydx = c

4

3
y3e−y

We recognize this as a gamma density (1) page 286 with λ = 1 and r = 4 thus
c = 1

8

Question b) With Z = g(Y ) = 4Y 3,
dg(y)

dy
= 12y2, Y =

(
Z
4

) 1
3 , using the boxed

result page 304 we get

fZ(z) =
y3

6
e−y

1

12y2
=

(
z
4

) 1
3

72
e−( z4)

1
3

Question c) We have |X| ≤ |Y | = Y . Thus E(|X|) ≤ E(Y ) = 4.
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Solution for exercise 5.2.11 in Pitman

Question a)
E(X + Y ) = E(X) + E(Y ) = 1.5

from the general rule of the expectation of a sum.

Question b)
E(XY ) = E(X)E(Y ) = 0.5

by the independe of X and Y .

Question c)

E((X − Y )2) = E(X2 + Y 2 − 2XY ) = E(X2) + E(Y 2)− 2E(XY )

= (V ar(X)+(E(X))2)+(V ar(Y )+(E(Y ))2)−2E(XY ) =
1

12
+

1

4
+1+1−1 =

4

3

from the general rule of the expectation of a sum, the computational formula for
the variance, and the specific values for the uniform and exponential distributions.

Question d)
E
(
X2e2Y

)
= E(X2)E

(
e2Y
)

We recall the general formula for E(g(Y )) from page 263 or 332

E(g(Y )) =

∫

y

g(y)f(y)dy

where f(y) is the density of Y . Here Y is exponential(1) distributed with density
f(y) = 1 · e−1·y. We get

E
(
e2Y
)

=

∫ ∞

0

e2y1 · e−ydy =∞

thus E
(
X2e2Y

)
is undefined (∞).
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Solution for exercise 5.2.15 in Pitman

Question a)

P (a < X ≤ b, c < Y ≤ d) = P (X ≤ b, c < Y ≤ d)− P (X ≤ a, c < Y ≤ d)

= P (X ≤ b, Y ≤ d)− P (X ≤ b, Y ≤ c)− (P (X ≤ a, Y ≤ d)− P (X ≤ a, Y ≤ c))

= P (X ≤ b, Y ≤ d)− P (X ≤ b, Y ≤ c)− P (X ≤ a, Y ≤ d) + P (X ≤ a, Y ≤ c)

= F (b, d)− F (b, c)− F (a, d) + F (a, c)

This relation can also be derived from geometric considerations.

Question b)

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dudv

Question c)

f(x, y) =
d2F (x, y)

dxdy

from the fundamental theorem of calculus.

Question d) The result follows from (2) page 350 by integration.

F (x, y) =

∫ x

−∞

∫ y

−∞
fX(x)fY (y)dydx =

∫ x

−∞
fX(x)dx

∫ y

−∞
fY (y)dy = FX(x)FY (y)

Alternatively define the indicator I(x, y) variables such that I(x, y) = 1 if X ≤ x
and Y ≤ y and 0 otherwise. Note that F (x, y) = P (I(x, y) = 1) = E(I(x, y))
and apply the last formula on page 349.

Question e) See also exercise 4.6.3 c). We find

F (x, y) = P (U(1) ≤ x, U(n) ≤ y) = P (U(n) ≤ y)− P (U(1) > x,U(n) ≤ y)

P (U(n) ≤ y)− P (x < U1 ≤ y, x < U2 ≤ y, . . . , x < Un ≤ y) = yn − (y − x)n

We find the density as

d2F (x, y)

dxdy
= n(n− 1)(y − x)n−2
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Solution for exercise 5.3.6 in Pitman

Question a)

P (N(0, 13) > 5) = 1− Φ

(
5√
13

)

Question b)
1− (1− Φ(1))2

Question c) Drawing helpful, suggests that the following should be true

Φ(1)− Φ(−1)

Question d)

P (1 > max (X,Y )−min (X,Y ) = P (1 > |X − Y |) = Φ

(
1√
2

)
− Φ

(−1√
2

)
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Solution for exercise 5.3.12 in Pitman

Question a) Let the coordinates shot i be denoted by (Xi, Yi). The difference between
two shots (X2 − X1, Y2 − Y1) is two independent normally distributed random
variables with mean 0 and variance 2. By a simple a scaling in example 1 problem
2 page 361 we get E(D) =

√
2
√

π
2

=
√
π.

Question b) We have E(D2) = 4 thus V ar(D) = 4− π.
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Solution for exercise 5.3.15 in Pitman

Question a) This is exercise 4.4.10 b). We recall the result Introducing Y = g(Z) =
Z2

fZ(z) =
1√
2π
e−

1
2
z2

, y = g(z) = z2, z =
√
y,

dy

dz
= 2z = 2

√
y

Inserting in the boxed formula page 304 and use the many to one extension.

fY (y) =
1√
2πy

e−
y
2 0 < y <∞

We recognize the gamma density with scale parameter λ = 1
2

and shape parameter
r = 1

2
from the distribution summary page 481. By a slight reformulation we have

fY (y) =
1

2

(
y
2

) 1
2
−1

√
π

e−
y
2

and we deduce have

Γ

(
1

2

)
=
√
π

Question b) The formula is valid for n = 1. Assuming the formula valid for odd n
we get

Gamma

(
n+ 2

2

)
= Γ

(n
2

+ 1
)

The recursive formula for the gamma-function page 191 tells us that Γ(r + 1) =
rΓ(r) and we derive

Gamma

(
n+ 2

2

)
=
n

2

√
π(n− 1)!

2n−1
(
n−1

2

)
!

Γ
(n

2

)
=

n−1
2∏

i=1

(
i− 1

2

)√
π

Question c) Obvious by a simple change of variable.

Question d) From the additivity of the gamma distribution, which we can prove
directly

Question e) From the interpretation as sums of squared normal variables.



2

Question f) The mean of a gamma (r, λ) distribution is r
λ
, thus χn has mean

n
2
1
2

= n.

The variance of a gamma (r, λ) distribution is r
λ2 , thus the variance of χn is

n
2
1
4

= 2n. Skewness bla bla bla
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Solution for exercise 5.4.3 in Pitman

For α = β we have the Gamma(2, α) distribution. We denote the waiting time in
queue i by Xi, and the total waiting time by Z.

Question a) The distribution of the total waiting time Z is found using the density
convolution formula page 372 for independent variables.

f(t) =

∫ t

0

αe−αuβe−β(t−u)du = αβe−βt
∫ t

0

eu(β−α)du =
αβ

β − α
(
e−αt − e−βt

)

Question b)

E(Z) = E(X1) + E(X2) =
1

α
+

1

β

See e.g. page 480 for the means E(Xi) for the exponential variables .

Question c) Using the independence of X1 and X2 we have

V ar(Z) = V ar(X1) + V ar(X2) =

√
1

α2
+

1

β2

The last equalit follows from e.g. page 480.
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Solution for exercise 5.4.4 in Pitman

Question a) We introduce the random variable X1 as the time to failure of the first
component and X2 as the additional time to failure of the second component.
From the assumption X1 and X2 are independent and exponentially distributed
with intensity 2λ. The sum of two independent exponentially distributed random
variables is gamma(2,2λ) distributed.

Question b) The mean of the gamma distribution is 2
2λ

= 1
λ

and the variance is
2

(2λ)2 = 1
2λ2 (page 286,481).

Question c)
1− e−2λt0.9(1 + 2λt0.9) = 0.9

e−2λt0.9(1 + 2λt0.9) = 0.1
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Solution for exercise 5.4.6 in Pitman

The argument of example 2 page 375 is easily generalized. Since Xi is gamma(ri, λ)
distributed we can write Xi as

Xi =

ri∑

j=1

Wij

where Wij are independent exponential(λ) variables. Thus

n∑

i=1

Xi =
n∑

i=1

ri∑

j=1

Wij

a sum of
∑n

i=1 ri exponential(λ) random variables. The sum is gamma(
∑n

i=1 ri, λ)
distributed.
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Solution for exercise 6.1.5 in Pitman

Question a) The probability in distribution in question is P (X1 = x1|X1 +X2 = n).
Using the definition of conditioned probabilities

P (X1 = x1|X1 +X2 = n) =
P (X1 = x1, X1 +X2 = n)

P (X1 +X2 = n)

=
P (X1 = x1, X2 = n− x1)

P (X1 +X2 = n)
=
P (X1 = x1)P (X2 = n− x1)

P (X1 +X2 = n)

where we have used the independence of X1 and X2 and the last equality. Now
using the Poisson probability expression and the boxed result page 226

P (X1 = x1|X1 +X2 = n) =

λ
x1
1

x1!
e−λ1

λ
n−x1
2

(n−x1)!
e−λ2

(λ1+λ2)n

n!
e−(λ1+λ2)

=
n!

x1!(n− x1)!

λx1
1 λ

n−x1
2

(λ1 + λ2)n
=

(
n
x1

)
px1(1− p)n−x1

with p = λ1

λ1+λ2
.

Question b) Let Xi denote the number of eggs laid by insect i. The probability in
question is P (X1 ≥ 90) = P (X2 ≤ 60). Now Xi ∈ binomial

(
150, 1

2

)
. With the

normal approximation to the binomial distribution page 99 to get

P (X2 ≤ 60) = Φ

(
60 + 1

2
− 150 · 1

2
1
2

√
150

)
= Φ

( −29√
150

)
= Φ(−2.37) = 0.0089
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Solution for exercise 6.1.6 in Pitman

Question a) We recall the definition of conditional probability P (A|B) = P (A∩B)
P (B)

,
such that

P (N1 = n1, N2 = n2, . . . Nm = nm|
m∑

i=1

Ni = n)
P (N1 = n1, N2 = n2, . . . Nm = nm ∩

∑m
i=1 Ni = n)

P (
∑m

i=1 Ni = n)

Now realising that P (N1 = n1, N2 = n2, . . . Nm = nm ∩
∑m

i=1 Ni = n) = P (N1 =
n1, N2 = n2, . . . Nm = nm) and using the fact that N =

∑m
i=1 Ni has Poisson

distribution with parameter λ =
∑m

i=1 λi we get

P (N1 = n1, N2 = n2, . . . Nm = nm|
m∑

i=1

Ni = n) =

∏m
i=1

λ
ni
i

ni!
e−λi

λ
∑m
i=1

ni

(
∑m
i=1 ni)!

e−λ

such that with n =
∑m

i=1 ni

P (N1 = n1, N2 = n2, . . . Nm = nm|
m∑

i=1

Ni = n) =
n!

n1!n2! · · ·nm!

(
λ1

λ

)n1
(
λ1

λ

)n2

· · ·
(
λm
λ

)nm

a multinomial distribution (page 155) with probabilities pi = λi
λ

.

Question b) Using

P (N1 = n1, N2 = n2, . . . Nm = nm) = P (N = n)P (N1 = n1, N2 = n2, . . . Nm = nm|
m∑

i=1

Ni = n)

we see that the Ni’s are independent Poisson variables.
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Solution for exercise 6.2.18 in Pitman

By definition

V ar(Y ) =
∑

y

(y−E(Y ))2f(y) =
∑

y

(y−E(Y ))2
∑

x

f(x, y) =
∑

x

∑

y

(y−E(Y ))2f(x, y)

We now apply the crucial idea of adding 0 in the form of E(Y |x)− E(Y |x) inside the
brackets.

V ar(Y ) =
∑

x

∑

y

(y − E(Y |x) + E(Y |x)− E(Y ))2f(x, y)

Next we multiply with one in the form of f(x)
f(x)

V ar(Y ) =
∑

x

∑

y

(y − E(Y |x) + E(Y |x)− E(Y ))2f(x, y)

f(x)
f(x)

By definition fY (y|x) = f(x,y)
f(x)

thus

V ar(Y ) =
∑

x

[∑

y

(y − E(Y |x) + E(Y |x)− E(Y ))2fY (y|x)

]
f(x)

Expanding the square sum we get

V ar(Y ) =
∑

x

[∑

y

(y − E(Y |x))2 + (E(Y |x)− E(Y ))2fY (y|x)

]
f(x)

since
∑

y(y − E(Y |x)) = 0. Now

V ar(Y ) =
∑

x

[∑

y

(y − E(Y |x))2fY (y|x)

]
f(x)+

∑

x

[∑

y

(E(Y |x)− E(Y ))2fY (y|x)

]
f(x)

the inner part of the first term is V ar(Y |X = x) while the inner part of the second
term is constant. Thus

V ar(Y ) =
∑

x

V ar(Y |X = x)f(x) +
∑

x

(E(Y |x)− E(Y ))2f(x)

leading to the stated equation

V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X))

an important and very useful result that is also valid for continuous and mixed distri-
butions. Mixed distributions are distributions that are neither discrete nor continuous.
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Solution for exercise 6.3.5 in Pitman

We note that Y for given X = x is uniformly distributed, on 1 +x for −1 < x < 0 and
on 1− x for 0 < x < 1. Thus

F (y|x) = P (Y ≤ y|X = x) =
y

1− |x| , 0 < y < 1− |x|

Question a) We have P
(
Y ≥ 1

2
|X = x

)
= 1− F

(
1
2
|x
)

Question b) We have P
(
Y ≤ 1

2
|X = x

)
= F

(
1
2
|x
)

Question c) Since Y for given X = x is uniformly distributed we can apply results
for the uniform distribution, see e.g. the distribution summary page 477 or 487.
We get

E(Y |X = x) =
1− |x|

2

Question c) Similarly

V ar(Y |X = x) =
(1− |x|)2

12
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Solution for exercise 6.3.14 in Pitman

We have immediately

P (X1 = x1, X2 = x2, . . . , Xn = xn) =
n∏

i=1

pXi(1− p)1−Xi = p
∑n
i=1 Xi(1− p)n−

∑n
i=1 Xi

The posterior density of p given X1 = x1, X2 = x2, . . . , Xn = xn is

f(p|X1 = x1, X2 = x2, . . . , Xn = xn) =
f(p;X1 = x1, X2 = x2, . . . , Xn = xn)

f(X1 = x1, X2 = x2, . . . , Xn = xn)

=
f(X1 = x1, X2 = x2, . . . , Xn = xn|p)f(p)∫ 1

0
f(X1 = x1, X2 = x2, . . . , Xn = xn|p)f(p)dp

Inserting the previous result to get

f(p|X1 = x1, X2 = x2, . . . , Xn = xn) =
p
∑n
i=1 Xi(1− p)n−

∑n
i=1 Xif(p)∫ 1

0
p
∑n
i=1 Xi(1− p)n−

∑n
i=1 Xif(p)dp

which only dependes on the Xi’s through their sum. Introducing Sn =
∑n

i=1 Xi we
rewrite

f(p|X1 = x1, X2 = x2, . . . , Xn = xn) =
pSn(1− p)n−Snf(p)∫ 1

0
pSn(1− p)n−Snf(p)dp

We note that if the prior density of p f(p) is a beta(r, s) distribution, then the
posterior distribution is a beta(r + Sn, s+ n− Sn) distribution.
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Solution for exercise 6.4.5 in Pitman

Question a) We calculate the covariance of X and Y using the definition page 630.

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(XY )

since E(X) = 0 We calculate

E(XY ) = E(X3) =

∫ 1

−1

x3 1

2
dx = 0

thus X and Y are uncorrelated.

Question b) We have

P

(
Y >

1

4

∣∣∣∣ |X| >
1

2

)
= 1 6= P

(
Y >

1

4

)

thus X and Y are not independent.
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Solution for exercise 6.4.6 in Pitman

X and Y are clearly not indpendent.

P (X = 0|Y = 12) = P (X1−X2 = 0|X1+X2 = 12) = 1 6= P (X1−X2 = 0) = P (X = 0)

However, X and Y are uncorrelated:

Cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ) = E(XY )

= E((X1 −X2)(X1 +X2)) = E(X2
1 −X2

2 ) = E(X2
1 )− E(X2

2 ) = 0

using the definition of covariance page 630
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Solution for exercise 6.4.7 in Pitman

Question a)

X2 X3 X2 +X3 X2 −X3 Probability
0 0 0 0 1

3

0 1 1 -1 1
6

1 0 1 1 1
3

1 1 2 0 1
6

X2 +X3 / X2 −X3 -1 0 1
0 0 1

3
0

1 1
6

0 1
3

2 0 1
6

0

Question b) With Z2 = X2 −X3 we get E((X2 −X3)3) = E(Z3
2) = −1

6
+ 1

3
= 1

6
.

Question c) X2 and X3 are independent thus uncorrelated. The new variables Z1 =
X2 +X3 and Z2 = X2−X3 are correlated. E(Z1Z2) = E(X2

2 )−E(X2
3 ) = 1

2
− 1

3
=

1
6
6= 5

6
1
6

= E(Z1)E(Z2)
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Solution for exercise 6.5.4 in Pitman

Question a) We have from the boxed result page 363 that X + 2Y is normally dis-
tributed with mean µ = 0 + 2 · 0 = 0 and variance σ2 = 1 + 4 · 1 = 5. We now
evaluate

P (X + 2Y ≤ 3) = P

(
X + 2Y√

5
≤ 3√

5

)
= Φ

(
3√
5

)
= Φ(1.34) = 0.9099

Question b) We have from the boxed result page 451

Y =
1

2
X +

√
1− 1

4
Z

where X and Z are indpendent standard normal variables. Thus

X + 2Y = 2X +
√

3Z

This is the sum of two independent normal variables which itself isNormal(0, 22+√
3

2
) distributed. Thus

P (X + 2Y ≤ 3) = Φ

(
3√
7

)
= Φ(1.13) = 0.8708
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Solution for exercise 6.5.6 in Pitman

Question a)
P (X > kY ) = P (X − kY > 0)

From the boxed result page 363 we know that Z = X − kY is normal(0, 1 + k2)
distributed, thus P (X − kY > 0) = 1

2
.

Question b) Arguing along the same lines we find P (U > kV ) = 1
2
.

Question c)

P (U 2 + V 2 < 1) = P (3X2 + Y 2 + 2
√

3XY +X2 + 3Y 2 − 2
√

3XY < 1)

= P

(
X2 + Y 2 <

1

4

)
= 1− e− 1

8 = 0.118

where we have used X2 + Y 2 ∈ exponential(0.5) in the last equality (page 360,
364-366, 485).

Question d)
X = v +

√
3Y ∈ normal(v, 3)



1

IMM - DTU 02405 Probability

2003-12-12
BFN/bfn

Solution for exercise 6.5.10 in Pitman

Question a) We first note from page that since V are W are bivariate normal, then

X =
V − µV
σV

Y =
W − µW
σW

are bivariate standardized normal. From page we have that we can write

Y = ρX +
√

1− ρ2Z

where X and Z are standardized independent normal variables. Thus any linear
combination of V and W will be a linear combination of X and Z. We know
from chapter 5. that such a combination is a normal variable. After some tedious
calculations we find the actual linear combinations to be

aV + bW = aµV + bµW + (aσV + bρσW )X + bσ2

√
1− ρ2Z

and
cV + dW = cµV + dµW + (cσV + dρσW )X + dσ2

√
1− ρ2Z

Such that (aV + bW ∈ normal(aµV + bµW , a
2σ2

V + b2σ2
W + 2abρσV σW ) and (cV +

dW ∈ normal(cµV + dµW , c
2σ2

V + d2σ2
W + 2cdρσV σW ).

Question b) We have from question a) that

V1 = aV + bW = µ1 + γ11X + γ12Z W1 = cV + dW = µ2 + γ21X + γ22Z

for some appropriate constants. We can rewrite these expressions to get

V1 − µ1√
γ2

11 + γ2
12

=
γ11X + γ12Z√

γ2
11 + γ2

12

= X1
W1 − µ2√
γ2

21 + γ2
22

=
γ21X + γ22Z√

γ2
21 + γ2

22

= Y1

such that X1 and Y1 are standard normal variables. We see that with some effort
we would be able to write

Y1 = ρ1X1 +
√

1− ρ2
1Z1

and we conclude from page 454 that V1 and W2 are bivariate normal variables.

Question c) We find the parameters using standard results for mean and variance

µ1 = E(aV + bW ) = aµV + bµW µ2 = E(cV + dW ) = cµV + bµW

σ2
1 = a2σ2

V + b2σ2
W + 2abρσV σW σ2

2 = c2σ2
V + d2σ2

W + 2cdρσV σW

We find the covariance from

E((aV + bW − (aµV + bµW ))(cV + dW − (cµV + dµW )))

= E[(a(V − µV ) + b(W − bµW ))(c(V − µV ) + d(W − µW ))]

etc
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Solution for review exercise 1 (chapter 1) in Pitman

Define the events

B0 : 0 defective items in box

B1 : 1 defective item in box

B2 : 2 defective items in box

I : Item picked at random defective

The question can be stated formally(mathematically) as

P (B2|I) =
P (I|B2)P (B2)

P (I|B0)P (B0) + P (I|B1)P (B1) + P (I|B2)P (B2)
=

1 · 0.03

0 · 0.92 + 0.5 · 0.05 + 1 · 0.03
=

6

11
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Solution for review exercise 3 (chapter 1) in Pitman

The outcomes of the experiment areHHH,HHT,HTH,HTT, THH, THT, TTH, TTT
taking the sequence into account, assuming that these 8 outcomes are equally likely we
see that the probability that the coin lands the same way at all three tosses is 1

4
. The

flaw in the argument is the lack of independence. We use knowledge obtained from the
experiment to choose the tosses which satisfy the requirement that the coin landed the
same way at these specific tosses. It is thus less likely that the toss not chosen in the
selection procedure had the same result, as one can verify by examining the outcome
space.
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Solution for review exercise 10 (chapter 1) in Pitman

We define the events

Ek Exactly k blood types are represented

Ai i persons have blood type A

Bi i persons have blood type B

Ci i persons have blood type C

Di i persons have blood type D

Question a)

P (E2) = P (A2) + P (B2) + P (C2) + P (D2) = p2
a + p2

b + p2
c + p2

d = 0.3816

Question b) We have p(k) = P (Ek). By combinatorial considerations we can show

P (Ai1 ∩Bi2 ∩ Ci3 ∩Di4) =
(i1 + i2 + i3 + i4)!

i1!i2!i3!i4!
pi1a p

i2
b p

i3
c p

i4
d

with i1 + i2 + i3 + i4 = 4, in our case. We have to sum over the appropriate values
of (i1, i2, i3, i4).

It is doable but much more cumbersome to use basic rules. We get

p(1) = 0.0687 p(2) = 0.5973 p(3) = 0.3163 p(4) = 0.0177

p(1) = P (E1) = P (A4) + P (B4) + P (C4) + P (D4) = p4
a + p4

b + p4
c + p4

d = 0.0687

p(4) = P (E4) = P (A1 ∩B1 ∩ C1 ∩D1) = 24papbpcpd = 0.0177

To calculate p(3) = P (E3) we use the law of averaged conditional probabilities

p(3) = P (E3) =

4∑

i=0

P (E3|Ai)P (Ai).

We immediately have
P (E3|A4) = P (E3|A3) = 0



2

To establish P (E3|A2) we argue

P (E3|A2) = P (B1∩C1|A2)+P (B1∩D1|A2)+P (C1∩D1|A2) =
pbpc + pbpd + pcpd

(1− pa)2

further

P (E3|A0) = P (B2∩C1∩D1|A0)+P (B1∩C2∩D1|A0)+P (B1∩C1∩D2|A0) =
4pbpcpd(pb + pc + pd

(1− pa)4

To evaluate P (E3|A1) we use the law of averaged conditional probability once
more (see Review Exercise 1.13)

P (E3|A1) =
4∑

i=1

P (E3|A1 ∩Bi)P (Bi|A1)

with

P (E3|A1 ∩B0) =
3pcpd(pc + pd)

(1− pa − pb)3

P (E3|A1 ∩B1) =
p2
c + p2

d

(1− pa − pb)2

P (E3|A1 ∩B2) =
pc + pd

1− pa − pb
P (E3|A1 ∩B3) = 0

and we get

P (E3|A1) =
3pcpd(pc + pd)

(1− pa − pb)3

(
1− pa − pb

1− pa

)3

+
p2
c + p2

d

(1− pa − pb)2
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Solution for review exercise 15 (chapter 1) in Pitman

Define the events Bi that box i is chosen, and the event G that a gold coin is found.
We have

P (G|B1) = 1, P (G|B2) = 0, P (G|B3) =
1

2

We want to find P (B1|G). The probability is found using Baye’s rule (p.49)

P (B1|G) =
P (G|B1)P (B1)

P (G|B1)P (B1) + P (G|B2)P (B2) + P (G|B3)P (B3)
=

2

3
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Solution for review exercise 13 (chapter 2) in Pitman

The probability that the manufacturer will have to replace a packet is

P (replace) =
50∑

i=3

(
50
i

)
0.01i0.9950−i = 1−

2∑

i=0

(
50
i

)
0.01i0.9950−i

= 0.9950

(
1 +

0.01

0.99
· 50

(
1 +

0.01

0.99
· 49

2

))
= 0.0138

Pitman claims this probability to be 0.0144. We evaluate the second probability using
the Normal approximation to the Binomial distribution. Let X denote the number of
packets the manufacturer has to replace. The random variable X follows a Binomial
distribution with n = 4000 and p =. We can evaluate the probability using the normal
approximation.

P (X > 40) = 1− P (X ≤ 40)=̃1− Φ

(
40 + 1

2
− 4000 · 0.0138√

4000 · 0.0138 · 0.9862

)

1− Φ

(−14.77

7.38

)
= 1− Φ(−2.00) = 0.9772

Slightly different from Pitman’s result due to the difference above.



����������
	�� 
�����
���������������� �!�#"%$�&
&
�'�(*)+
�(*),�-/.1032 �5476
8:9<;>=@?BA�9DC EF9DGHGBIKJLA�INM IPOLIQG�RNA>STIVUXW YZR\[�]_^@?`IQGaUDbcA>C deA�?`f ]XC
gihQj1h�kmlZh
npo1hQh&qrh�lsn,tNuwv`npomxynzh&{ZxF|�n,}�~DvB�1��n,t�xF�+hKnp�,xFl1t,�<��n+nph�j�|��r�+�,h�|�np}�~�xyl1j:npo1h
h&qrh�l�nK�npo1xynPx����r�+j���tznp�pxyl1t,�<��n+nph�j�|��r�,�+h�|�n,}�~F�
�<���������%���c��� gih�|>xyl�h&{��1�+h�t,t n,o1h¡h&qrh�lsnD� �¢linph��+�Dtw�F£�npoZh�u_v+¤ t �s~�� ¥§¦3¨©7ª ¨y«�¬ u_v+�	�o1h_h�qrh�lsnpt­u_v\xF�,hw�X®Znp®1xF}¢}�~�h&{�|�}�®1t,��qrhXt+®1|�o�npomx�n
®1t+�¢l1¯<npo1h xyj1j1��n,�¢�rlL�,®Z}¢h°�mxF¯rhX± ���h­¯rh�n ²D³ �H´B¥ ²¶µ ¦ ¨©7ª ¨y«�¬ u_v¸·X¥ ¨¹©7ª ¨�«�¬

²¡³ u_vº´»P���¼npoZhQ�1�,�r�1xF�1�¢}���n,�¢h�t ²D³ u_v*´zxF�,hK¯r��qFh�l��s~¡npoZh­½\�¢l1�F�D�¢xF}¾j1�¢t�np�,���1®Zn,�¢�rlD�mxF¯rh­¿ � xyl1j�mxy¯rhQÀ�ÁFÂZÃZt,� ²D³ �H´`¥ ¨¹©7ª ¨y«�¬ ÄÆÅ vLÇwÈ © ³ ��É È ´ ¨y« ©
�<���������%���cÊ�� ²¡³ �a´B¥¼ËZÌ ÂrÂFÍ�Î ³ ��Ï ¿ Ë�Ì!Ë �Ë�Ì!ÂrÂ Î ��Ï Á± ËZÌ Ë �ËZÌ ÂrÂ�Ð�Ð ¥ÑË�Ì!ÂrÂFÂrÂFÀsÒ



1

IMM - DTU 02405 Probability

2003-10-12
BFN/bfn

Solution for review exercise 25 (chapter 2) in Pitman

Question a) We define the events Ai that player A wins in i sets. We have immedi-
ately

P (A3) = p3

Correspondingly, player A can win in 4 sets if he wins 2 out of the first 3 and the
4’th.

P (A4) = p · p · q · p+ p · q · p · p+ q · p · p · p = 3p3q

similary we find
P (A5) = 6p3q2

Question b) The event A (player A wins) is A = A1 ∪ A2 ∪ A3. The events Ai are
mutually exclusive and we get

P (A) = P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3) = p3(1 + 3q + 6q2)

Question c) The question can be reformulated as

P (A3|A) =
P (A3 ∩ A)

P (A)
=

1

1 + 3q + 6q2

using the general formula for conditional probability p.36.

Question d)
3

8

Question e) Pitman suggests no, which is reasonable. However, the way to assess
whether we can assume independence or not would be to analyze the distribution
of the number of sets played in a large number of matches.
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Solution for review exercise 33 (chapter 2) in Pitman

Question a) Throw the coin twice, repeat if you get two heads. The event with
probability 1

3
now occurs if you got two tails, otherwise the complentary event

occurred.

Question b) Throw the coin twice, repeat until you get one head and one tail. Then
use HT or TH as the two possibilities.
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Solution for review exercise 35 (chapter 2) in Pitman

Question a)
35∑

i=20

(
1000
i

)(
1

38

)i(
37

38

)1000−i

Question b) The standard deviation
√

1000 1
38

37
38

=̃5.1 is acceptable for the Normal

approximation.

Φ


35 + 1

2
− 1000 1

38√
1000 1

38
37
38


− Φ


20− 1

2
− 1000

38√
1000 1

38
37
38


 = Φ(1.814)− Φ(−1.346) = 0.8764
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Solution for review exercise 19 (chapter 3) in Pitman

Question a)

P (Y ≥ X) =

∞∑

x=0

P (X = x)P (Y ≥ X|X = x)

now X and Y are independent such that

P (Y ≥ X) =

∞∑

x=0

P (X = x)P (Y ≥ x)

There is a convenient formula for the tail probabilities of a geometric distribution,
see eg. page 482. We need to adjust this result to the present case of a geometric
distribution with range 0, 1, . . . (counting only failures), such that P (Y ≥ x) =
(1− p)x. We now insert this result and the Poisson densities to get

P (Y ≥ X) =
∞∑

x=0

µx

x!
e−µ(1− p)x = e−µeµ(1−p) = e−µp

where we have used the exponential series
∑∞

x=0
(µ(1−p))x

x!
= eµ(1−p).

Question b)

e−µp = e−
1
2 = 0.6065
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Solution for review exercise 25 (chapter 3) in Pitman

Question a) The joint distribution of (Y1, Y2) is given by

Y1/Y2 0 1 2
0 9

36
6
36

3
36

1 6
36

4
36

2
36

2 3
36

2
36

1
36

as a check we verify that the sum of all entries in the table is 1. We derive the
distribution of Y1 + Y2

Y1 + Y2 = i 0 1 2 3 4
P (Y1 + Y2 = i) 9

36
12
36

10
36

4
36

1
36

Question b)

E(3Y1+2Y2) = E(3Y1)+E(2Y2) = 3E(Y1)+2E(Y2) = 5E(Y1) = 5

(
0 · 1

2
+ 1 · 1

3
+ 2 · 1

6

)
=

10

3

The first equality is true due to the addition rule for expectations (page 181), the
second equality is true due to the result for linear functions of random variables
page 175 b., the third equality is true since Y1 and Y2 has the same distribution,
and the fourth equality is obtained from the definition of the mean see page 181.

Question c)

f(x) =





0 for X ≤ 3
1 for 4 ≤ X ≤ 5
2 for X = 6

or something similar.
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Solution for review exercise 29 (chapter 3) in Pitman

Question a) We note that the probability does not depend on the ordering, i.e. the
probability of a certain sequence depends on the number of 1’s among the Xi’s
not on the ordering. ∏k−1

j=0(b+ jd)
∏n−k−1

j=0 (w + jd)
∏k−1

j=0(b+ w + jd)

Question b) To obtain the distribution of Sn the number of black balls drawn, we

note that there is

(
n
k

)
different sequences each with the probability derived in

question a) that lead to the event Sn = k.

P (Sn = k) =

(
n
k

) ∏k−1
j=0(b+ jd)

∏n−k−1
j=0 (w + jd)

∏k−1
j=0(b+ w + jd)

Question c) (
n
k

)
k!(n− k)!

(n+ 1)!
=

1

n+ 1

Question d) Not independent since, but interchangeable

Question e) We approach the question by induction. We first show

P (X1 = 1) =
b

b+ w

We then derive P (Xn+1 = 1) assuming P (Xn = 1) = bb+ w in a Polya model.

P (Xn+1 = 1) = P (Xn+1 = 1|X1 = 1)P (X1 = 1)+P (Xn+1 = 1|X1 = 0)P (X1 = 0) = P (Xn+1 = 1|X1 = 1)
b

b+ w
+P (Xn+1 = 1|X1 = 0)

w

b+ w

To proceed we note that the probability P (Xn+1 = 1|X1 = 1) is the probability
of P (Yn = 1) in an urn scheme starting with b + d blacks and w whites, thus
P (Xn+1 = 1|X1 = 1) = P (Yn = 1) = b+d

b+w+d
. Correspondingly P (Xn+1 = 1|X1 =

0) = b
b+w+d

. Finally

P (Xn+1 = 1) =
b+ d

b+ w + d

b

b+ w
+

b

b+ w + d

w

b+ w
=

b

b+ w



2

Question f)

P (X5 = 1|X10 = 1) =
P (X10 = 1|X5 = 1)P (X5 = 1)

P (X10 = 1)
= P (X10 = 1|X5 = 1)

using Bayes rule, or from the exchangeability. From the exchangeability we also
have

P (X10 = 1|X5 = 1) = P (X2 = 1|X1 = 1) =
b+ d

b+ w + d
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Solution for review exercise 34 (chapter 3) in Pitman

Question a) The function gz(x) = zx defines a function of x for any |z| < 1. For
fixed z we can find the E(gz(X)) using the definition in the box on the top of
page 175. We find

E(gz(X)) = E(zX) =
∞∑

x=0

zxP (X = x)

However, this is a power series in z that is absolutely convergent for |z| ≤ 1 and
thus defines a C∞ function of z for |z| < 1.

Question b) The more elegant and maybe more abstract proof is

GX+Y (z) = E
(
zX+Y

)
= E

(
zXzY

)

From the independence of X and Y we get (page 177)

GX+Y (z) == E
(
zX
)
E
(
zY
)

= GX(z)GY (z)

The more crude analytic proof goes as follows

GX+Y (z) = E
(
zX+Y

)
=
∞∑

k=0

zkP (X+Y = k) =
∞∑

k=0

zk

(
k∑

i=0

P (X = i, Y = k − i)
)

again from the independence of X and Y we get

GX+Y (z) =
∞∑

k=0

zk

(
k∑

i=0

P (X = i)P (Y = k − i)
) ∞∑

i=0

∞∑

k=i

zkP (X = i)P (Y = k−i)

The interchange of the sums are justified since all terms are positive. The rear-
rangement is a commonly used tool in analytic derivations in probability. It is
quite instructive to draw a small diagram to verify the limits of the sums. We
now make further rearrangements

GX+Y (z) =
∞∑

i=0

∞∑

k=i

zkP (X = i)P (Y = k − i)

=
∞∑

i=0

ziP (X = i)
∞∑

k=i

zk−iP (Y = k − i) =
∞∑

i=0

ziP (X = i)
∞∑

m=0

zmP (Y = m)

by a change of variable (m = k − i). Now

GX+Y (z) =
∞∑

i=0

ziP (X = i)
∞∑

m=0

zmP (Y = m) =
∞∑

i=0

ziP (X = i)GY (z) = GX(z)GY (z)
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Question c) By rearranging Sn = (X1 + · · ·+Xn−1) +Xn we deduce

GSn(z) =
n∏

i=1

GXi(z)

We first find the generating function of a Bernoulli distributed random vari-
able(binomial with n = 1)

E(zX) =

1∑

x=0

zxP (X = x) = z0 · (1− p) + z1 · p = 1− p(1− z)

Now using the general result for Xi with binomial distribution b(ni, p) we get

E(zXi) = (E(zX))ni = (1− p(1− z))ni

Generalizing this result we find

E(zSn) = (1− p(1− z))
∑n
i=1 ni

i.e. that the sum of independent binomially distributed random variables is itself
binomially distributed provided equality of the pi’s.

Question d) The generating function of the Poisson distribution is given in exercise
3.5.19. Such that

GSn(z) =
n∏

i=1

e−µi(1−z) = e−
∑n
i=1 µi(1−z)

The result proofs that the sum of independent Poisson random variables is itself
Poisson.

Question e)

GX(z) =
zp

1− z(1− p) GSn =

(
zp

1− z(1− p)

)n

Question f)

GSn =

(
zp

1− z(1− p)

)∑n
i=1 ri
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Solution for review exercise 7 (chapter 4) in Pitman

Question a) We require
∫∞
∞ f(x)dx =

∫∞
−∞ αe

−β|x|dx = 1. We have α = β
2

since∫∞
0
βe−βxdx = 1.

Question b) We immediately get E(X) = 0 since f(x) is symmetric around zero.
The second moment E(X2) is identical to the second moment of the standard
exponential, which we can find from the computational formula for the variance.
We additionally have V ar(X) = E(X2) since E(X) = 0.

V ar(X) = E(X2) =
1

β2
+

(
1

β

)2

=
2

β2

Question c)

P (|X| > y) = 2P (X > y) = 2

∫ ∞

y

β

2
e−βtdt =

∫ ∞

y

βe−βtdt = e−βy

the standard exponential survival function.

Question d) From the result in c) we are lead to

P (X ≤ x) =

{
1
2
eβx x < 0

0.5 + 1
2
e−βx 0 < x
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Solution for review exercise 13 (chapter 4) in Pitman

We introduce the random variables Nloc(t) and Ndis(t) as the number of local respec-
tively long distance calls arriving within time t (where t is given in minutes).

Question a)

P (Nloc(1) = 5, Ndis(1) = 3) = P (Nloc(1) = 5)P (Ndis(1) = 3)

due to the independence of the Poisson processes. The variables Nloc(t) and
Ndis(t) has Poisson distributions (page 289) such that

P (Nloc(1) = 5, Ndis(1) = 3) =
(λloc · 1)5

5!
e
−λloc·1·(λdis · 1)3

3!
e
−λdis·1 =

λ3

disλ
5

loc
5!3!

e
−λloc−λdis

Question b) The sum of two indpendent Poisson random variables is Poisson dis-
tributed (boxed result page 226), leading to

P (Nloc(3) +Ndis(3) = 50) =
((λloc + λdis)3)50

50!
e
−(λloc+λdis)3

Question c) We now introduce the random variables Siloc and Sidis as the time of
the i’th local and long distance call respectively. These random variables are
Gamma distributed according to the box on the top of page 286 or to 4. page
289 The probability in question can be expressed as The waiting time to the first
long distance in terms of calls are geometrically distributed

P (X > 10) = (1− pdis)10 =

(
λloc

λloc + λdis

)10
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Solution for review exercise 21 (chapter 4) in Pitman

Question a) We first note using exercise 4.3.4 page 301 and exercise 4.4.9 page 310
hat R1 and R2 are both Weibull

(
α = 2, λ = 1

2

)
distributed. The survival function

is thus (from E4.3.4) G(x) = e−
1
2
x2

. We now apply the result for the minimum
of independent random variables page 317 to get

P (Y ≤ y) = P (min (R1, R2) ≤ y) = 1−P (R1 > y,R2 > y) = 1−P (R1 > y)(R2 > y)

= 1− e− 1
2
y2

e−
1
2
y2

= 1− e−y2

a new Weibull distribution with α = 2 and λ = 1. If we did not recognize the
distribution as a Weibull we would derive the survival function of the Ri’s by

P (Ri > x) =

∫ ∞

x

ue−
1
2
u2

du = e−
1
2
x2

We find the density using (5) page 297 or directly using E4.3.4 (i)

fY (y) = 2ye−y
2

Question b) This is a special case of E4.4.9 a). We can re-derive this result using the

change of variable formula page 304. With Z = g(Y ) = Y 2 we get
dg(y)

dy
= 2y.

Inserting we get

fZ(z) = 2ye−y
2 1

2y
= e−z

an exponential(1) distribution.

Question c) We have E(Z) = 1 (see e.g. the mean of an exponential variable page
279 or the distribution summary page 477 or page 480).
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Solution for review exercise 23 (chapter 4) in Pitman

We introduce Y = M − 3 such that Y has the exponential distribution with mean 2.

Question a)

E(M) = E(Y + 3) = E(Y ) + 3 = 5 V ar(M) = V ar(Y + 3) = V ar(Y ) = 4

where we have used standard rules for mean and variance see eg. page 249, and
the result page 279 for the variance of the exponential distribution.

Question b) We get the density fM(m) of the random variable M is

fM(m) =
1

2
e−

1
2

(m−3) m > 3.

from the stated assumptions. We can apply the box page 304 to get

fX(x) =
fM(m)

dx
dm

=
1
2
e−

1
2

(log (x)−3)

x
=

e
3
2

2

x
√
x
, x > e3

where X = g(M) = eM . Alternatively

FX(x) = P (X ≤ x) = P (log (X) ≤ log (x) = P (log (X)− 3 ≤ log (x)− 3)

= P (Y ≤ log (x)− 3) = 1− e−(log (x)−3)
2 = 1− e

3
2√
x

x > e3

taking derivative we get

fX(x) =
dFX(x)

dx
==

e
3
2

2

x
√
x
, x > e3

Question c) We do the calculations in terms of the random variables Yi = Mi − 3,
Mi = log (Xi). Here Xi denotes the magnitude of the i’th earthquake. From
Example 3 page 317 we know that the minimum Z of the Yi’s, Z = min (Y1, Y2)
is exponentially distributed with mean 1.

P (M > 4) = P (Z > 1) = e−1
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Solution for review exercise 25 (chapter 4) in Pitman

Question a) We first note that the range of Y is 0 < Y ≤ 1
2
.

P (Y ≤ y) = P

(
U ≤ 1

2

)
P

(
(Y ≤ y|U ≤ 1

2

)
+P

(
1

2
< U

)
P

(
(Y ≤ y|1

2
< U

)
= 2P (U ≤ y)

The density is 2 for 0 < y < 1
2

0 elsewhere.

Question b) The standard uniform density f(y) = 1 for 0 < y < 1, 0 elsewhere.

Question c)

E(Y ) =
1
2
− 0

2
=

1

4
, V ar(Y ) =

(
1
2
− 0
)2

12
=

1

48
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Solution for review exercise 26 (chapter 4) in Pitman

Question a)
E(Wt) = E

(
XetY

)
= E(X)E

(
etY
)

by the independence of X and Y . We find E
(
etY
)

from the definition of the
mean.

E
(
etY
)

=

∫ 3
2

1

ety · 2dy =
2et

t

(
e
t
2 − 1

)

Inserting this result and E(X) = 2 we get

E(Wt) = 2
2et

t

(
e
t
2 − 1

)

Alternatively we could derive the joint density of X and Y to

f(x, y) = 2(2x)3e−2x, 0 < x, 0 < y < 1

where we have used that X has Gamma (4,2) density, and apply the formula for
E(g(X,Y )) page 349.

Question b) Since X and Y are independent we find E(W 2
t )

E(W 2
t ) = E(X2)E

((
etY
)2
)

where E(X2) = V ar(X) + (E(X))2 = 5, see eg. page 481. Next we derive

E
((
etY
)2
)

=
e2t

t

(
et − 1

)

and apply the computational formula for the variance page 261

SD(Wt) =

√
5
e2t

t
(et − 1)−

(
2

2et

t

(
e
t
2 − 1

))2

=
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Solution for review exercise 1 (chapter 5) in Pitman

First apply the definition of conditional probability page 36

P

(
Y ≥ 1

2
|Y ≥ X2

)
=
P
(
Y ≥ 1

2
∩ Y ≥ X2

)

P (Y ≥ X2)

The joint density of X and Y is the product of the marginal densities since X and Y
are independent (page 349). We calculate the denominator using the formula for the
probability of a set B page 349

P (Y ≥ X2) =

∫ 1

0

∫ 1

x2

1 · 1 · dydx =

∫ 1

0

(1− x2)dx = 1− 1

3
=

2

3

and the numerator

P

(
Y ≥ 1

2
∩ Y ≥ X2

)
= P (Y ≥ X2)− P

(
Y <

1

2
∩ Y ≥ X2

)

Now for the last term

P

(
Y <

1

2
∩ Y ≥ X2

)
=

∫ 1√
2

0

∫ 1
2

x2

1 · dydx =

∫ 1√
2

0

(
1

2
− x2)dx

=
1

2

1√
2
− 1

3

1

2

1√
2

=
1

3
√

2

Finally we get

P

(
Y ≥ 1

2
|Y ≥ X2

)
=

2
3
− 1

3
√

2
2
3

= 1−
√

2

4
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Solution for review exercise 20 (chapter 5) in Pitman

Question a) This is example 3 page 317. A rederivation gives us

P (Tmin ≤ t) = 1− P (Tmin > t) = 1− P (T1 > t, T2 > t)

with T1 and T2 independent we get

P (Tmin ≤ t) = 1− P (T1 > t)P (T2 > t)

now inserting the exponential survival function page 279 we get

P (Tmin ≤ t) = 1−
(
1−

(
1− e−λ1t

)) (
1−

(
1− e−λ2t

))
= 1− e−(λ1+λ2)t

the cumulative distribution function of an exponentially distributed random vari-
able with parameter λ1 + λ2.

Question b) This question is Example 2 page 352. A slightly different handling of
the integrals gives us

P (T1 < T2) =

∫ ∞

0

∫ ∞

t1

λ1e
−λ1t1λ2e

−λ2t2dt2dt1

=

∫ ∞

0

λ1e
−λ1t1e−λ2t1dt1 =

∫ ∞

0

fT1(t1)P (T2 > t1)dt1

which is an application of the rule of averaged conditional probability (page 41)
for a continuous density. The general result is stated page 417 as the Integral
Conditioning Formula. We get

P (T1 < T2) =

∫ ∞

0

λ1e
−λ1t1e−λ2t1dt1 =

λ1

λ1 + λ2

Question c) Consider

P (Tmin > t|Xmin = 2) = P (T1 > t|T2 > T1) =
P (T1 > t, T2 > T1)

P (T2 > T1)
=
P (T1 > t, T2 > T1)

P (Xmin = 2)

We evaluate the probability in the denominator by integrating the joint density
over a proper region (page 349), similarly to example 2 page 352

P (T1 > t, T2 > T1) =

∫ ∞

t

∫ ∞

t1

λ1e
−λ1t1λ2e

−λ2t2dt2dt1
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=

∫ ∞

t

λ1e
−λ1t1e−λ2t1dt1 =

λ1

λ1 + λ2

e−(λ1+λ2)t

By inserting back we finally get

P (Tmin > t|Xmin = 2) = e−(λ1+λ2)t = P (Tmin > t)

such that Tmin and Xmin are independent.

Question d) We can define Xmin = i whenever Tmin = Ti. Then P (Xmin = i) =
λi

λ1+···+λn , and Tmin and Xmin are independent.
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Solution for review exercise 8 (chapter 6) in Pitman

Question a) Using the multiplication rule see e.g. page 425 top we get

f(x, y) = fY (y)fX(x|Y = y) = 2e−2y 1

y
e−

x
y

The marginal density fX(x) of X is given by

fX(x) =

∫ ∞

0

2e−2y 1

y
e−

x
y dy

a non-standard density.

Question b) Using average conditional expectation page 425 bottom we get

E(X) = E(E(X|Y )) = E(Y ) =
1

2

noting that the roles of X and Y are interchanged.

Question c) Similarly

E(XY ) = E(E(XY |Y )) = E(Y E(X|Y )) = E(Y 2) = V ar(Y ) + (E(Y ))2 =
1

2

We have E(X2) = E(E(X2|Y )) = E(2Y 2) = 1. Thus V ar(X) = SD(X)2 =

1− 1
4

= 3
4

and SD(Y ) = 1
2
. Finally Corr(X,Y ) =

1
2
− 1

4√
3

2
1
2

=
√

3
3


