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Solution for exercise 1.1.1 in Pitman

Question a) 2
Question b) 67%.
Question c) 0.667
Question a.2) %
Question b.2) 57%.

Question c.2) 0.571
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Solution for exercise 1.1.2 in Pitman

Question a) 8 of 11 words has four or more letters: %

4

Question b) 4 words have two or more vowels:

4

Question c) The same words qualify (4): 15
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Solution for exercise 1.1.7 in Pitman

A special case of a problem, which we will treat in full generality later.

Question a) count the possibilitites 4 out of 36,

Ol

Question b) count the possibilitites 9 out of 36,

PN

1 _ 5
9~ 36

Question c) From a) and b) 1
2z

Question d) b) in general g—; ¢) in general 22=1

Question e) The sum is over all possible outcomes, and should thus be 1.
Inserting x = 6 we get % =1 q.e.d.
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Solution for exercise 1.2.4 in Pitman

It may be useful to read the definition of Odds and payoff odds in Pitman pp. 6 in
order to solve this exercise

Question a) We define the profit pr

pr=10(8+1)—100-1 = —10

Question b) The average gain pr. game is defined as the profit divided by the number

of games
-1
U
n 100
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Solution for exercise 1.3.1 in Pitman

Denote the fraction the neighbor gets by x. Then your friend gets 2z and you get 4.

The total is one, thus z = % and you get ‘—;.
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Solution for exercise 1.3.2 in Pitman

Question a) The event which occurs if exactly one of the events A and B occurs

(AN B°) U (A°N B)

Question b) The event which occurs if none of the events A, B, or C' occurs.
(AN B°NC*)

Question c) The events obtained by replacing “none” in the previous question by
“exactly one”, “exactly two”, and “three”

Exactly one (ANB°NC)U(A“NBNC)U (AN B°NC)
Exactly two (ANBNC)U(ANB°NC)U(A°NBNC)
Exactly three (AN BNC)
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Solution for exercise 1.3.4 in Pitman

We define the outcome space Q2 = {0, 1,2}

Question a) yes, {0,1}
Question b) yes, {1}
Question c¢) no, (we have no information on the sequence)

Question d) yes, {1,2}
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Solution for exercise 1.3.8 in Pitman

It may be useful to make a sketch similar to the one given at page 22 in Pitman.

From the text the following probabilities are given:
P(A)=0.6 P(A°)=1-P(A)=04

P(B)=04 P(B°)=1-P(B)=06
P(AB) = P(ANB) = 0.2

Question a)
P(AUB) = P(A) + P(B) — P(AB) = 0.6 + 0.4 — 0.2 = 0.8

Question b)

P(A9)=1—P(A)=1-0.6=04
Question c)

P(B)=1-P(B)=1-04=0.6
Question d)

P(A°B) = P(B) — P(AB)=04-0.2=10.2
Question e)
P(AUB®)=1—-P(B)+ P(AB)=1-04+02=0.8

Question f)

P(A°B®) =1 — P(A) — P(B)+ P(AB) =1— 0.6 — 0.4+ 0.2 = 0.2
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Solution for exercise 1.3.9 in Pitman

Question a)
P(FUG)=P(F)+ P(G)— P(FNG)=0.740.6—-0.4=0.9
using exclusion-inclusion.
Question b)
P(FUGUH) = P(F)+P(G)+P(H)—-P(FNG)—P(FNH)—P(GNH)+P(FNGNH)
=07+06+05-04-03-024+01=1.0
using the general version of exclusion-inclusion (see exercise 1.3.11 and 1.3.12).

Question c)
P(FFNG°NH)=P(FUG)NH)

PH)=P(FUG)NH)+P(FUG)NH)
The latter probability is
P(FUG)NH)=P((FNH)U(GNH))=P(FNH)+P(GNH)—-P(FNGNH)

=03+02-01=04

such that
P(F‘NG°NH)=05-04=0.1
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Solution for exercise 1.3.11 in Pitman

P(AUBUC)=PAU(BUQ))

now applying inclusion-exclusion

P(AU(BUC)) = P(A)+P(BUC)—P(AN(BUC)) = P(A)+P(BUC)—P((ANB)U(ANC))
once again we aplly inclusion-exclusion (the second and the third time) to get
P(AU(BUC)) = P(A)+P(B)+P(C)—P(BNC)—(P(ANB)+P(ANC)—P((ANB)N(ANC)))

= P(A)+ P(B)+ P(C)— P(BNC)— P(ANB) — P(ANC) + P(ANBNC)
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Solution for exercise 1.3.12 in Pitman

We know from exercise 1.3.11 that the formula is valid for n = 3 and consider
P (U A;) = P (UL A) U Ay -

Using exclusion-inclusion for two events we get the formula stated p.32. Since the
exclusion-inclusion formula is assumed valid for n events we can use this formula for
the first term. To get through we realize that the last term

P (U?:lAiAn—H)

is of the form
P (UL, Bi)

with B; = A; N A, 1, implying that we can use the inclusion-exclusion formula for this
term too. The proof is completed by writing down the expansion explicitly.



IMM - DTU 02405 Probability
2004-2-4
BFN/bfn

Solution for exercise 1.4.1 in Pitman

Question a) Can’t be decided we need to know the proportions of women and men
(related to the averaging of conditional probabilities p. 41)

Question b) True, deduced from the rule of averaged conditional probabilities
Question c) True
Question d) True

Question e)

3 1
—-0.92+ —-0.88 =091
4 * 4

true
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Solution for exercise 1.4.2 in Pitman

We define the events

A The light bulb is not defect

B The light bulb is produced in city B

From the text the following probabilities are given:
P(A|B) =0.99 P(A°|B)=1- P(A|B)=0.01

P(B)=1/3 P(B%) =2/3

solution

P(AN B) = P(B)P(A|B) = 0.99/3 = 0.33
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Solution for exercise 1.4.9 in Pitman

Question a) In scheme A all 1000 students have the same probability (1555) of being

chosen. In scheme B the probability of being chosen depends on the school. A

student from the first school will be chosen with probability ==, from the second

300°
with probability ﬁ, and from the third with probability ﬁ. The probability

of chosing a student from school 1 is p; - ﬁ, thus p; = %. Similarly we find
D2 = % and p3 = %
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Solution for exercise 1.4.10 in Pitman
We define the events

S1 Source one works

S2 Source two works

W0 No working sources

W1 One source works

W2 Two sources work

FE Enough power awailable.

Question a) The event W0 = S1¢N .52¢. Since S1 and S2 are independent
we know that S1¢ and S2¢ are independent too. Thus

P(W0) = P(S1°NS2°) = P(51°)P(52°) = (1—P((S1))(1—P(52)) = (1-0.4)(1-0.5) = 0.3

P(W2) = P(51N S2) = P(S1)P(52) = 0.4-0.5 = 0.2

The three events W0, W1, and W2 constitute a partition of the outcome
space (p. 20). Thus

P(W1)=1— P(W0)— P(W2) =05

Question b) Once again using that W0, W1, and W2 constitute a partition
and use the rule of averaged conditional probability p. 41 (p. 73)

P(E) = P(E|WO0)P(W0)+P(E|W1)P(W1)+P(E[W2)P(W2) = 0-0.3+0.6-0.5+1-0.2 = 0.5
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Solution for exercise 1.5.1 in Pitman

We introduce the events

O The odd box is picked

B A black marble is picked

We have P(O) = £ and P(B|O) = 1, P(B|0°) = 2 = L.

Question a) The events O and O is a partition (page 20, see also page 40).
We apply the rule of averaged conditional probabilities (box at top of
page 41, summary page 73) to get

P(B) = P(B|O)P(O) + P(B|O%)P(0°) —

Question b) The probability in question is P(O¢ B¢),which is a standard
setting for the application of Bayes rule (interchange of conditioning)
page 49 or summary page 73. We get

P(W[O)P(0°) _§-35 _ 8

PO =—pmy —~"F ~ 1@
24

Remark:  We could have written the denominator in full as on page
49. However the denominator is simply the probability of the event which
we condition upon on the left side of Bayes rule; that is the event A in
the genereal form page 49, or in this case the event B.
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Solution for exercise 1.5.3 in Pitman

C The event that the chip is ok

A The event that a chip is accepted by the cheap test

Question a)

P(A|C)P(C) . 1-08
(A|C)P(C) + P(A|Ce)P(C)e  0.8+0.1-0.2

P(Cl4) = -

Question b) We introduce the event
S Chip sold
P(S)=08+0.2-0.1 =0.82
The probability in question is

e P(S|C®)P(C®) . 01-02 1
P18 = Bsicapca + PSIOIP(C) ~ 002 +1-08 — 1
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Solution for exercise 1.5.5 in Pitman

Define the events

H A randomly selected person is healthy

D A randomly selected person is diagnosed with the disease

Question a) From the text we have the following quantities
P(H)=0.99 P(D|H) = 0.05 P(D|H®) =0.8
and from the law of averaged conditional probabilities we get

P(D) = P(H)P(D|H) + P(H®)P(D|H¢) = 0.99 - 0.05 + 0.01 - 0.8 = 0.0575

Question b) The proability in question
P(H°N D) = P(H®)P(D°|H®) = 0.01 % 0.2 = 0.002
using the multiplication (chain) rule
Question c) The proability in question
P(H N D) = P(H)P(D°|H) = 0.99 % 0.95 = 0.9405
using the multiplication (chain) rule

Question d) The probability in question is P(H¢|D). We use Bayes rule to “inter-
change” the conditioning

P(D|H®)P(H®)

=0.8-0.010.008 + 0.05 - 0.99 = 0.139
(DIH®)P(He) + P(D|H)P(H)

P(HID) =

Question e) The probabilities are estimated as the percentage of a large group of
people, which is indeed the frequency interpretation.
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Solution for exercise 1.5.9 in Pitman

Denote the event that a shape of type ¢ is picked by Tj;, the event that it lands flat by
F and the event that the number rolled is six by S. We have P(T;) = %,i =1,2,3,
P(F|T) = %,P(F|T2) = %, and P(F|T3) = % P(S|F) = %, and P(S|F°) = 0.

Question a) We first note that the six events 7; N F and T; N F° (i = 1,2,3) is a
partition of the outcome space. Now using The Rule of Averaged Conditional
Probabilities (The Law of Total Probability) page 41

P(S) = P(SITANF)P(TANF)+P(S|ToNF)P(ToNF)+P(S|T3sNEF)P(T3NF)+P(S|TANFC) P(TyNF)+

The last three terms are zero. We apply The Multiplication Rule for the proba-
bilities P(T; N F') leading to

P(S) = P(S|TANF)P(F|Th) P(Th)+P(S|TeNF) P(F|T2) P(T)+ P(S|T3NEF) P(F|13) P(T5)

a special case of The Multiplication Rule for n Events page 56. Inserting numbers

111 111121 1

)= -4 T —
(9)=335" 2337233 " 1
Question b) The probability in question is P(T1]S). Applying Bayes’ rule page 49

pinls) = TR 6
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Solution for exercise 1.6.1 in Pitman

This is another version of the birthday problem. We denote the event that the first n
persons are born under different signs, exactly as in example 5 page 62. Correspond-
ingly, R, denotes the event that the n’th person is the first person born under the same
sign as one of the previous n — 1 persons. We find

P(D,Jzﬁ(l—il_?l), n <13

i=1

We find P(D,) = 0.57 and P(D;) = 0.38.



IMM - DTU 02405 Probability
2003-9-24
BFN/bfn

Solution for exercise 1.6.5 in Pitman

Question a) We will calculate the complementary probability, the no student has the

same birthday and do this sequentially. The probability that the first student has
a different birthday is %, the same is true for all the remaining n — 2 students.

The probability in question is

364\
P(All other n — 1 students has a different birthday than no.1) =1 — <%>

Question b)

364\"" _ 1 In (2)
1-(22) >-en> 1 =253.7
(365) =5 T 0 (365) — In (364) |

Question c) In the birthday problem we only ask for two arbitrary birthdays to be
the same, while the question in this exercise is that at least one out of n — 1 has
a certain birthday.
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Solution for exercise 1.6.6 in Pitman

Question a) By considering a sequence of throws we get

P1) =0
1
PR2) = -
(2) 5
52
P3) = ==
(3) 6E
4
pa) = 243
666
5434
P(B) = 2-2
(5) 6666
54325
P — Z°ZZ
(6) 66666
54321
P — ZZZC
(M) 66666

Question b) The sum of the probabilities py to pg must be one, thus the sum in
question is 1.

Question c) Can be seen immediately.
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Solution for exercise 1.6.7 in Pitman

Question a) The exercise is closely related to example 7 p.68. Using the same nota-
tion and approach

P(Current flows) = P((S; U S2) NS3) = (1 — P(STNSS))P(S3) = (1 — q1¢2)qs3
(use 1 = p1pa + q1pa2 + P1G2 + q1¢2 to get the result in Pitman)
Question b)
P(Current flows) = P(((S1 U S3) N S3)cupSy) =1 — (1 — q192)q3q4

(or use exclusion /inclusion like Pitman)
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Solution for exercise 1.6.8 in Pitman

question a) The events B;; occur with probability

1
P(Bij) = 352

It is immediately clear that

1

P(Blg ﬁ ng) - @

= P(Blg)P(ng)

implying independence. The following is a formal and lengthy argument. Define

Aj;; as the the event that the i’th person is born the j’th day of the year.

We have P(A;.) = === and that A,, Asj, A3y, and Ay, are independent. The

i 365
event B;; can be expressed by

B;; = U26:51 (Aipg N AjL)

such that P(B;;) = = by the independence of A;; and A; . The event BjyM Bagy

— 365
can be expressed by

Biy N Byg = U, (Ayy N Az N Ag )
and by the independence of the A’s we get P(Bis N Bag) = ﬁ
question b) The probability
P(Bi3|B12 N Byz) =1 # P(Bs3)
thus, the events Bys, B3, Ba3 are not independent.

question c) Pairwise independence follows from a)
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Solution for exercise 2.1.1 in Pitman

Question a) We use the formula for the number of combinations - appendix 1, page
512 (the binomial coefficient)

7 7 7 7-6-5
(4)‘(3)‘@‘3.2-1_35

Question b) The probability in question is given by the binomial distribution, see eg.

page 81.
5\° /1\* 35-125
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Solution for exercise 2.1.2 in Pitman

We define the events Gi: i girls in family. The probabilities P(G7) is given by the
binomial distribution due to the assumptions that the probabilities that each child is
a girl do not change with the number or sexes of previous children.
4 ) 1r14t 1 3

Z. P(G2)=6-—="2

P(Gz):( 22 16 8

P(G2) = 1 — P(G2) = g
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Solution for exercise 2.1.4 in Pitman

We denote the event that there are 3 sixes in 8 rolls by A, the event that there are 2
sixes in the first 5 rolls by B. The probability in question is P(B|A). Using the general
formula for conditional probabilities page 36

P(BNA)

P(BIA) = =5

The probability P(BNA) = P(A|B)P(B) by the multiplication rule, thus as a speical
case of Bayes Rule page 49 we get
P(BNA) P(AB)P(B)

PBIY==Fm = P

Now the probability of P(A) is given by the binomial distribution page 81, as is P(B)
and P(A|B) (the latter is the probability of getting 1 six in 3 rolls). Finally

S\ 3\ 5 3
P(B|A) = P(2 sixes in 5 rolls) P(1 six in 3 rolls)  \ 2 A e |

P(3 sixes in 8 rolls) B 5 s B 8
2 )& 3

a hypergeometric probability. The result generalizes. If we have = successes in n trials
then the probability of having y < x successes in m < n trials is given by

)y
(%)

The probabilities do not depend on p.
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Solution for exercise 2.1.6 in Pitman

We define events Bi that the man hits the bull’s eye exactly i times. The probabilities
of the events Bi is given by the Binomial distribution

P(Bi) = < f ) 0.7'0.3%~"

Question a) The probability of the event

87-6-5
P(B4) = ————0.7*0.3* = 0.1361
(B4) = 5 0-7'0.3" = 0.136
Question b)
P((B4N(U,B,)) P(B4)
P(B4| U}, B;) = i=2 = ==0.1
B B) = =50y T- (B~ P(B1) 1

Question c)

< g ) 0.7%0.3* = 0.0595



IMM - DTU 02405 Probability
2004-2-10
BFN/bfn

Solution for exercise 2.2.1 in Pitman

All questions are answered by applying The Normal Approximation to the Binomial
Distribution page 99 (131). We have p =n-p = 400-% =200, 0 = \/npq = 400%% =
10. The questions differ only in the choice of @ and b in the formula.

Question a) a =190,b = 210

210.5 — 200 189.5 — 200
P(190 to 210 successes) = P <7) - <7)

10 10
— ®(1.05) — B(—1.05) = 0.8531 — (1 — 0.8531)0.7062
Question b) a = 210,b = 220

220.5 — 200 209.5 — 200
P(210 to 220 successes) = ¢ (7) - (7)

10 10
= (2.05) — ®(0.95) = 0.9798 — 0.8289 = 0.1509

Question c) a = 200,b = 200

2005 — 2 199.5 — 200
P(200 successes) = @ (00517000> _ (9951—0)

= $(0.05) — &(—0.05) = 0.5199 — (1 — 0.5199) = 0.0398
Question d) a = 210,b = 210

210.5 — 200 209.5 — 200
P(210 successes) = ® (07> ) (7>

10 10

= $(1.05) — ¢(0.95) = 0.8531 — 0.8289 = 0.0242
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Solution for exercise 2.2.4 in Pitman

We apply The Normal Approximation to the Binomial Distribution page 99. Note
that b=oo such that the first term is 1. We have y = n - p = 300 - % = 100 and

o =4/30053 = 10\/% The value of @ in the formula is 121 (more than 120). We get

120.5 — 100

= 1-®(2.51) = 1-0.994 = 0.
T ) (2.51) 0.994 = 0.006

P(More than 120 patients helped = 1—® (
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Solution for exercise 2.2.6 in Pitman

We introduce the events O; to describe that i voters in the survey oppose the
measure. From section 2.1 box at bottom of page 81 we deduce that X is
binomially distributed.

Question a) The probability in question is (page 81)

P(Og0) = ( 29900 ) 0.45%00.55'10

We evaluate this probability by approximation page 99.

90 + 1 — 0.45 - 200 o 90 — 1 —0.45- 200
/200 - 0.45 - (1 — 0.45) /200 - 0.45 - (1 — 0.45)

P(Og)=® (

= ®(0.07) — ®(—0.07) = 2- ®(0.07) — 1 = 0.056
Question b) The probability in question is

P(more than 100 voters oppose the measure) = P (Ufgqui) =

200 + 1 — 0.45 - 200 101 — 1 — 0.45 - 200
—o =1—-®(1.49) = 0.0681
/200 - 0.45 - (1 — 0.45) /200 - 0.45 - (1 — 0.45)
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Solution for exercise 2.2.9 in Pitman

We define the events S; that ¢ passengers show up. The probability of the
event ; is given by the Binomial distribution, and can be approximated using
the normal approximation

Question a)

P(More than 300 passengers show up) = 1—P(At most 300 passengers show up) =

300+ 1 —-0.9-324
1—® ( b
V324-0.1-0.9

Question b) Increase; the relative variability increases.

> =1 — &(1.65) = 0.0495

Question c)

150 + £ — 0.9 162
V162-0.1-0.9

P(More than 150 pairs show up) = 1—® ( > =1-9(1.23) = 0.1093
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Solution for exercise 2.2.14 in Pitman

Question a) We define the events Wi that a box contains i working devices. The
probability in question can be established by

—P(W390UW 391UW 392UW 393U 394UV 395UV 396UV 397U 398UW 399U 400)

— P(W390)+P(W391)+P(W392)+P(W393)+P(W394)-+P(W395)+P(W396)+P(W397)+P(W39

since the event Wi are mutually exclusive. The probabilities P(W4i) are given by
the binomial distribution

P(i) = ( 400 ) 0.95°0.05400,

7
we prefer to use the normal approximation, which is

390 — 1 —400-0.95
V400 - 0.95 - 0.05

1—P(less than 390 working)=1—® ( ) =1-9(2.18) = 1-0.9854 = 0.0146

Without continuity correction we get 1 — ®(2.29) = 0.0110 The skewness correc-
tion is: 1 1-9.005 1
—= - (2.18% — 1)——e 221 = 0.0048
6/400 - 0.95-0.95 V2r
The skewness correction is quite significant and should be applied. Finally we
approximate the probability in question with 0.00098, which is still somewhat

different from the exact value of 0.0092.

Question b)

E+1—400-0.95
P(at least k)=1— & ( . ) > 0.95

/400 - 0.95 - 0.05

With .
= —400-0.95
t 3 < —1.645

v/400-0.95-0.05

we find k = 373.



IMM - DTU 02405 Probability
2003-9-24
BFN/bfn

Solution for exercise 2.4.7 in Pitman
Question a) From page 90 top we know that m is the largest integer less than equal
to (n+1)-p= 2.6, thus m = 2.

Question b)

( 225 ) 0.120.9% = 0.2659

Question c)

@(2+%_2'5> @(1+%_2'5>—®(0) ®(—0.667) = 0.2475
V25 - 0.09 V25009 ) T

Question d)
2.5

-5 e 2% = 0.2566

Question e) Normal m is now 250

@(250+%—250) @(250—%—250) Y 1) a( 1)_00266
V2500 - 0.09 V2500-0.09 /30 307

Question f) Poisson - as above 0.2566.
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Solution for exercise 2.4.8 in Pitman

The Poisson probabilities P, (k) are

We use odds ratio for the probabilities

P(k+1)  fame h

P(k) ey k1

02405 Probability

The ratio is strictly decreasing in k. For g < 1 maximum will be P,(0), otherwise the
probabilities will increase for all k£ such that p > k, and decrease whenever 1 < k. For
non-integer £ the maximum of P, (k) (the mode of the distribution) is obtained for the

largest k < p. For p intger the value of P,(u) = P,(pn+ 1).
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Solution for exercise 2.4.10 in Pitman

The probability of the event that there is at least one success can be calculated using
the Binomial distribution. The probability of the complentary event that there is no
successes in n trials can be evaluated by the Poisson approximation.

Similarly for n = gN
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Solution for exercise 2.5.1 in Pitman

Question a) We use the hypergeometric distribution page 125 since we are dealing
with sampling without replacement

< 20 ) < 30 >
4 6
P(Exactly 4 red tickets) = -
(o)
Question b) We apply the binomial distribution (sampling with replacement page

123)
20\"* /30° 243
P(Exactly 4 red tickets) = ( 140 ) (%) (%) = 210W
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Solution for exercise 2.5.4 in Pitman

We have sampling without replacement. The probability in question can be
derived from the result on page 125. First we use this result to state the
probability that we get exactly ¢ men in the sample

( 40,000 ) ( 60, 000 )
i 100 — ¢
P(i) = P(i men) = ! !
100, 000
100
then the probability in question can be found as

40,000 60, 000
100 i 100 — i

P(at least 45 men in sample) = Z
P 100, 000
100

We approximate the probabilities P(i) using the binomial distribution

P(i)= 1007} ¢ 470,100
7

100
P(at least 45 men in S&Hlplo) = Z ( 1(.)0 ) 0.4°0.6007¢ = 1—P(at most 44 men in sanlp]c),

i=45 !
The latter probability can be evaluated approximately with the normal ap-
proximation.

4443 —40

v100-0.4-0.6

P(at most 44 men in sample)=® ( ) = $(0.92) = 0.8212.

Finally
P(at least 45 men in sample)=0.1788

(the skewness correction is (0.0003) if you would like to apply that too).
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Solution for exercise 2.5.5 in Pitman

The probability in question is given by the Binomial distribution evaluated
with the Normal approximation (boxed result page 99). Let A; define the event
that i voters in the sample prefer A. Then P(4;) is given by the Bin(n,0.55)
distribution. We want to determine n such that P (Ui>%Ai) > 0.99 &
P (Uz‘ggAi) < 0.01. Expressed differently P (O < Number preferring B < %)

Thus

3

24+1-055-
22 T < -233=n>557 .
n-0.55-0.45

Pitman gets 537 ignoring the continuity approximation.
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Solution for exercise 2.5.9 in Pitman

Question a) The probability that the second sample is drawn is the probability that
the first sample contains exactly one bad item, which occurs with probability

10 40
1 4
p1 = 50
5
(the hypergeometric distribution page 125). The probability that the second

sample contains more than one bad item is calculated via the probability of the
complementary event, i.e. that the second sample contains one or two bad items,

which is
9 36 9 36
A\ 0 10 N 1 9
b2 = 15 15
10 10
The answer to the question is the product of these two probabilities p;(1 —py) =
0.2804.

Question b) The lot is accepted if we have no bad items in the first sample or the
event described under a)

() (5) (D)) (G)e) (D))
(5 ) L) ()
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Solution for exercise 3.1.1 in Pitman

Question a) The probabilities P(X =1),i = 0,1,2,3 are given by the bino-

P(X =)

1
53

mial distribution, P(X = i) = < :;) )

W N =] ODf =

100 | 400 | Lafoo | Lofoo |

Question b) We define a random variable Y = |X — 1|, with range 0,1,2.

Then

| —| O =
00 1=t oo |
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Solution for exercise 3.1.4 in Pitman

© B B|88-RHS
10 |88 R-R-RR
il b ol Eoal ol B
07 | B|B-|8-I8-15-18
A |8 8-8-18-18-18

il el EolEopl o B

X2/X1

10 O

1
2
3
) 4

Question a

Y2/Y1

© | 2| BB 221 R
10 |2 BB 2R o
<+ HEHEHEHRS ©
» ~2H%go © ©
™~ 1_81_%0 o o o

——foc oo oo

<t 0 O

Question b) 3




IMM - DTU 02405 Probability
2003-10-5
BFN/bfn

Solution for exercise 3.1.5 in Pitman

The random variable Z = X; X5 hasrange {1, 2, 3,4, 5,6, 8,9, 10, 12, 15, 16, 18, 20, 24, 25,36 }.
We find the probability of Z = ¢ by counting the combinations of X, Xy for which
X1 Xy = 1. we get:

Z =i | P(Z=1)
1 1
5 )
3 326
4 336
5 326
6 S
8 326
9 316

36
10 =
12 =
15 =
16 =
18 =
20 =
24 =
25 a5
30 =
36 a
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Solution for exercise 3.1.12 in Pitman
Question a) Binomial B(n,p;)
Question b) Binomial B(n,p; + p;)

Question c¢) Multinomial P(n,p;,p;, 1 —p; — p;)
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Solution for exercise 3.1.14 in Pitman

Question a) We define the events Gg as the the events that team A wins in g games.
The probabilities P(Gg) can be found by thinking of the game series as a sequence
of Bernoulli experiments. The event Gy is the event that the fourth succes (win
by team A) occurs at game g. These probabiliites are given by the negative bino-
mial distribution (page 213 or page 482). Using the notation of the distribution
summary page 482, we identify r = 4, n = g — 4 (i.e. counting only the games
that team A loses). We get

—1 _
P(Gg)=<i_1 )p4qg Y g=456,7

Question b)
7
-1 _
p4z ( g ; > ¢
g=4

Question c) The easiest way is first answering question d) then using 1—binocdf (3,7,2/3)
in MATLAB.
0.8267

Question d) Imagine that all games are played etc. From the binomial formula
P+ Tp°q + 21p°¢* + 35p'q® = p” + pPq + 6p°q + 6p°¢* + 15p°¢* + 35p’q?
= p® + 6p°q + 15p*¢* + 20p*¢® = p° + p’q + 5p°q + 15p*¢* + 20p* ¢
etc.

Question e)
P(G=4)=p"+q"  P(G=5)=A4pq(p’ +¢°)

P(G=6)=10"¢(p*+¢*)  P(G=1)=200"¢(p+q)

Independence for p = q = %
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Solution for exercise 3.1.16 in Pitman

Question a) Using the law of averaged conditional probabilities we get
P(X4Y =n)=> P(X =i)P(X+Y =n|X =i) =) P(X =i)P(Y =n—i)
=0 1=0

where the last equality is due to the independence of X and Y.

Question b) The marginal distribution of X and Y is

We get

36 36 189/ ' 12

1 5 11\ 1 1 35
PX+Y=8)=2(-—- L=
(X+Y =8 ( ) 12 12 16-81
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Solution for exercise 3.1.24 in Pitman

Question a) We define P(X even) = P(Y even) = p, and introduce the random
variable W = X + Y. The probability p,, of the event that W is even is
po=p"+(1=p)1-p) =2p"+1-2p=(1-p)°+p’

. o . 1 _ l
with minimum 5 for p = 3.

Question b) We introduce py = P(X mod 3 = 0),p; = P(X mod 3 = 1),ps =
P(X mod 3 = 2). The probability in question is

Py + P} + P3 + 3popips
which after some manipulations can be written as

1 — (pop1 + pop2 + p1p2 — 3pop1p2)

The expressions can be maximized /minimized using standard methods, I haven’t
found a more elegant solution than that.
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Solution for exercise 3.2.1 in Pitman

15-0.1425-0.2+50-0.7=41.5
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Solution for exercise 3.2.2 in Pitman

Let us denote the numbers on the first list by z; and the numbers on the second
list by y; The average of the first list is 1-0.2 4+ 2. 0.8 = 1.8. The average of
the second list is 3- 0.5+ 5 0.5 = 4.0.

Question a) The average of the list made by addition is 5.8. This can be

seen by
| oo 100 100

1
Too 2% t ) = 1002z+1002%

i=1

Question b) The average of the list made by subtraction is —2.2 by the same
approach.

Question ¢) The average in question is

100

100 Z i

and we need some information on the ordering to calculate the sum, thus
we do not have sufficient information.

Question d) Asc).
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Solution for exercise 3.2.3 in Pitman

Question a) Let X define the number of sixes appearing on three rolls. We find

P(X =0) = (2)’ P(X =1) = 3%, P(X =2) =35, and P(X = 3) = &.
Using the definition of expectation page 163

5\° 52 5 11
=0-(= 1.3 4+92.3— =
) =0 <6> 135 +2:35 43 5 =5

=
s
||
g
G
=
||

or realizing that X € binomial (3, %) example 7 page 169 we have F(X) = 3- é =
1
5.

Question b) Let Y denote the number of odd numbers on three rolls, then Y €
binomial (3,1) thus E(Y) =33 =3.
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Solution for exercise 3.2.7 in Pitman

We define the indicator variables I; which are 1 of switch i are closed 0 elsewhere. We
have X = I + I, + --- + I,,, such that

E(X)=E(Ii+L+---+1,) = E(I,)+ E(L)+---+ E(I,) =p1+pz+--~+pnzzpi
1=0
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Solution for exercise 3.2.8 in Pitman

E(X+Y))=EBEX?2+Y24+2XY)=E(X?) + E(Y? +2E(XY) =11
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Solution for exercise 3.2.14 in Pitman

The event Bi that at least one person gets off at floor ¢. Using indicators /g,
we introduce the random variable N as the number of stops. We have

N=1Ig +-+1Igo  E(N)=E(g +- -+ Ipo)
E(N) = E(Ip,+ - +Ip0) = E(Ip,)+ -+ E(Ip,0) = P(Bi)+ - -+P(B10) = 10P(By)
We find P(By) = 1— P(B) = 1— (%)™ thus B(N) = 10 (1 . (%)12) =718
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Solution for exercise 3.2.17 in Pitman

Question a) The event D < 9 occurs if all the red balls are among the first 9 balls
drawn. The probability of this event is given by the Hypergeometric distribution

p- 125 and 127.
3 10
3 6
P(D<9) = = 0.2937

13
9
Question b)

3 10 3 10
3 6 3 )
P(D=9)=P(D<9)—P(D<8) = - — 0.2284
13 13
9 8
Question c) To calculate the mean we need the probabilities of P(D = i) for i =
3,4,...,13. We get

3 10 10
PD =)= ( : )( &)3 ) N <(Z ;33)) N ﬁg_w N 13!12'()2!3)! N i(a;-lfz(i- 112)
Gi—1)(i—=2) (—D(i-2)(i-3) 3(i—1)(i-2)

(13—3)!4!
2
P(D=1i)=P(D<i)—-P(D <i-1)= — _

13-12-11 13-12-11 13-12-11
12

E(D) = Z@'?’(i —DGE=2) _ 5 > i(i-1)(i-2) ;6,006 =105

13-12-11  13-12-11 T 13-12-11

i=



IMM - DTU 02405 Probability
2003-10-12
BFN/bfn

Solution for exercise 3.2.21 in Pitman
Question a) We have by definition of the indicator that

T — 1 if Aoccurs [ 1 if A° occurs
A7) 0 if (A9 occurs | 0 if A occurs

which is 1 — I4.

Question b)
Tow — 1 if AB occurs
AB 0 if (AB)© occurs

ete.

Question C) By rCWriting ]A1UA2U---UAn as 1_I(A1UA2U-"UATL)C = 1—](AiﬁASmﬁA7CL)
and applying the results of a) and b).

Question d) By expanding the product and taking expectation on both sides,
then using E(I4) = P(A).
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Solution for exercise 3.3.1 in Pitman

# of days 28 30 31
Question a) frequency 1 4 7

1 4 7365
B(X) =28 5430 5 +3l- 55 = > = (30.42)

12 12 12

1 4 7
F(X%) =282. — +30%- — +31%2. —
(X%) 12" 12" 12

SD(X) = E(X?) — E(X)?=0.86

# of days 28 30 31

Question b) frequency % % %

28 120 217 11111
E(X)=28- 30 - 31- =
(X) 365 + 365 + 365 365
28 120 217 338489
E(X?) =9282. 30%- 31%. -
(X%) 365 * 365 * 365 365

SD(X)=+/E(X?) — E(X)?=0.841
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Solution for exercise 3.3.2 in Pitman

The random variable Y is binominally distributed. The mean E(Y) = 35 = 3,
the variance is V(Y) = 321 = 2. The Mean of Y2 is

3 ) 3—1
oy 3\ /1) /1\"" 3 3 1

Alternatively we could have used the computational formula for the variance

VY) + (B(Y))? — Z + Z 3

P(Y—O)—(%)s P(Y—l)—3<%)3 P(Y—2)—3<%>3 P(Y

The variance of Y2 can be found by
V(Y?) = B((Y?)?) = (E(Y?))?
We need to calculate £((Y?)?) = E(Y*)

3+16-3+81-1 132 33
Byt =2- i =—==

Finally
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Solution for exercise 3.3.4 in Pitman

The computational formula for the variance page 186 is quite useful (important). This
exercise is solved by applying it twice. First we use it once to get:

Var(X1X,) = BE(X1X2)?) — (B(X1Xy))?
Now by the independence of X; and Xs
E(X1X:)")—(B(X1X,))* = BE(X7X5)—(E(X1)E(X2))* = BE(X?)E(X3)~(E(X1)E(X2))?

using the multiplication rule for Expectation page.177 valid for independent random
variables. We have also used the fact that if X; and X, are independent then f(X;)
and ¢g(Xs) are independent too, for arbitrary functions f() and g(). We now use the
computational formula for the variance once more to get

Var(X1Xz) = (Var(X:) + (B(X1))*)(Var(Xz) + (E(X2))?) — (B(X1)E(X))?
Now inserting the symbols of the exercise we get

Var(X,1Xs) = 0205 + pios + pio;
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Solution for exercise 3.3.14 in Pitman

Question a) Markov’s inequality

P(X > 50,000) < =

Question b) Chebychevs inequality

P(X ~ B(X)| 2 kSD(X)) =< 15
we have & = 5 such that the probability is bounded by % The bound
provided by Chebychevs inequality is much sharper than the one pro-
vided by Markov’s inequality.
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Solution for exercise 3.3.19 in Pitman

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X;
denote the weight of the i’th passenger. The total load W is W = Z?OI X;.

5000 — 30 - 150
55v/30

P(W > 5000)=1 — ® ( ) =1 — ®(1.66) = 0.0485
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Solution for exercise 3.3.23 in Pitman

We define S,, as the time of installment of the n’th battery. Similarly we define N, to be
the number of batteries replaced in the interval [0, t(. We have P(S, <t) = P(N; > n),
thus P(Nyps > 26) = P(S9 < 104) where the time unit is weeks. We now apply the
Normal approximation (Central Limit Theorem) to Sag.

104 — 26 - 4
P(Sy < 104)=d (7> =05
1-/104
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Solution for exercise 3.4.1 in Pitman

Question a) X the number of heads in 9 tosses is binominally distributed,
thus

p<x_s>_(§)p5<1—p>4

Question b) Y the number of tosses for the first head is geometrically dis-
tributed, thus
PO =1) = (1=p)%

Question c) Z the number of tosses to get 5 heads follows a negative binomial
distribution

Pz=12)= () Ja-p

Question d) X; the number of heads in the first 8 tosses and X, the number
of heads in the next 5 tosses are independent. We get

(3 )0 (D)o =3 (3) (3 )

i i=
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Solution for exercise 3.4.2 in Pitman

First we restate D : number of balls drawn to get two of the same colour. We draw
one ball which is either red or black. Having drawn a ball of some colour the number
of draws to get one of the same colour is geometrically distributed with probability %
Thus D = X + 1 where X is geometrically distributed with p = %

Question a)

Question b)

from page 212 or 476,482.

Question c)

VD) = V(X +1)=V(X)= =P _2  $p(D) =2

from page 213 or 476,482.
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Solution for exercise 3.4.9 in Pitman

We define the random variable N as the number of throws to get heads. The pay back
value is N2, the expected win from the game can be expressed as

E(N?—-10) = E(N?) - 10

using the rule for the expectation of a linear function of a random variable p. 175
b. We could derive F(N?) from the general rule for expectation of a function of a
random variable p. 175 t. However, it is more convenient to use the fact the NV follows
a Geometric distribution and use the Computational Formula for the Variance p. 186.

E(N?) =Var(N) + (E(N))? = 1p_2p - G)) =24+4=6

The values for Var(N) and E(N) can be found p. 476 in the distribution summary.
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Solution for exercise 3.4.12 in Pitman

We will use the formula for the geometric series

> ¢ =ltqtq.. = —,  g<1
- 1—gq
=0

repeatedly in this exercise.

Question a) The Rule of Averaged Conditional Probabilities p.41 applied for
a countable rather than a finite partitioning. See also p.209 Infinite Sum
Rule.

P(Wy=Wa) =Y P(Wi = w)P(Wa = Wi [W; = w)
w=1
Now using the indpendence of W; and Wy we get

P(W. Z P(W; =w)P(Wy = w) Zp1(1—p1)w_1p2(1—172)w_1

_ P1p2
1— (1 *pl)(l *p2))

e 3 (1 - )1 )

k=0
Question b) Similarly

p1(1 —Pz)
1= (1=p)(1=p2))

P(W1<W2):ZP<W1:UJ)P(W2>U) Zpl 1 pl 1 pz)
w=1

where the relation P(Wy > w) = (1 — pa)* can be derived using the

formula of the geometric series. The result is stated directly page 482.

Question c)
p2(l —p1)

11— (1 *Pl)(l *Pz))

P(Wy < Wy) =

Question d)
P(min (W, W) = w) = P(Wy = Wa = w)+P(Wy = w,Ws > w)+P(W; > w, Wy = w)
=pip2((1=p1)(1=p2))* 4 pi(1—p1)“ (1=p2)*+(1—p1)“p2(1—p2)* "
= (P1p2tp1(1=p2)+(1=p1)p2) (1—p1) (1—p2))* " = (1—(1—p1)(1—p2)) (1 —p1) (1—p2))*
We could have stated this result directly without calculations, by consid-

ering two simultaneously running series of Bernoulli experiments, where
we stop as soon as we get a succes in one of them.

1




Question e)
P(max (Wl, Wg) = w) = P(W1 = W2 = w)+P(W1 = w, W2 < U))—f—P(Wl <w, W2 = U))

= p1pa((1=p1) (1=p2))* T +p1(1=p1)* H(1—=(1=p2)* ")+ (1= (1—p1)* )pa(1—pa)* "
=pi(1=p)“ "+ pa(l —p2)* " = (p1 + p2 — p1p2) (1 — p1)(1 — pa))* ™"
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Solution for exercise 3.4.17 in Pitman

We introduce N as the number of children and D as the number of boys in a
family. The number of boys in a family of size n is bin (n, %) distributed. By
applying the rule of averaged conditional probabilities we get

P(D_k)_iP(D_MN_n)P(N_n)_i(Z> (;)n.pnap)

n=k n=k

The terms in the sum are close to the terms of a negative binomial distribution
distribution see summary page 482 or derivation page 213 Example 4. We first
identify the parameter r to be k+1. The probability of a succes is (1 - g) .
Summing over all possible outcomes ¢ > r) for an NB (k +1, (1 - g)) dis-
tribution (using the distribution in the standard form -page 215 or page 482)

gives
S ("R D @)

Now using an appropriate change of summation variable (n = m + k)
s k+1 n—k
S(5) -5 6
— k 2 2

We now need to manipulate our expression for P(D = k) to apply this result
thus eliminating or evaluating the sum.

P(D:k):iP(D:MN:n)P(N:n):i(Z> <%)n-p"(1—p)

n=k n==k

TS (D)D" B
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Solution for exercise 3.5.4 in Pitman

We define the stochastic variables X; as the number of misprints on page i.
We assume that the number of characters on each page are approximately
the same and that misprints occur independently of each other with a fixed
probability for each character. We will evaluate probabilities using the Poisson
distribution.

P(X; <5) = P(X; =0)+ P(X; = 1) + P(X; = 2) + P(X; = 3) + P(X, = 4)

1 1 1 65
—1 -1
= 1+1+=-4+=4—)=—=—e " =0.9963
e (1+1+ 5 + 5 + 5 4) 516
The event that at least one page has at least 5 misprints is complementary to

the event that all pages has at most 4 misprints.

P(max(X);) >5) =1— P(X; <4)*° =0.6671
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Solution for exercise 3.5.5 in Pitman

Assuming the microbes are randomly distributed we apply the Poisson distri-
bution. The parameter of the Poisson distribution is found using the Poisson
Scatter Theorem p. 230 t., thus 5,000+ 10 ¢ = 0.5. Applying this we get

— ™ = 0.3935

P(at least one microbe)
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Solution for exercise 3.5.9 in Pitman

Question a)

Question b)

P(X;Y21>_HX+Y22_1—HX+YSQ
=1-(P(X+Y=0)+PX+Y =1))=1—(1+3)e*=0.80,
where we use a) to find P(X +Y =0) and P(X +Y = 1).

Question c)

PX=1X+Y =4)

P(X—HX+Y—2>

5 =P(X=1X+Y=4)=

P(X +Y =4)

—123 2 3
o 1 2
Sl L (Zl) () (> — 0.395
16_3 1 3 3

the conditional probability is given by the Binomial distribution. This
is a general result.
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Solution for exercise 3.5.10 in Pitman

Question a) X is Poisson distributed with parameter A. Using page 175,
linear functions of X,

EBX +5)=3E(X)+5
and the mean of a Poisson distributed random variable page 223

E(3X +5)=3E(X)+5=3\+5

Question b) Using linear functions of X page 188, - here called Scaling and
Shifting, and the variance of a Poisson distributed random variable page
223.
V(X +5) =9V (X) =9\

Question c¢) We use the definition of the expectation of a function of a ran-
dom variable p.175

N B T D |
2iac = ;(i+1)!

i=0
er L )it
G
Now _
o0 (I_Z_ .
Z T
=0
such that R
e e A\ 1
- —— (1=
) Z(i+1)' Y=
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Solution for exercise 3.5.13 in Pitman

Question a) Using the Poisson Scatter Theorem p.230 we get

,6.023 - 1023

51 1o~ 26881072

plz) =

and

o(z) = \/u(r) = 5.1854 - 10°2/z

Question b)
5.1854 - 10%0\/x

. . T
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Solution for exercise 3.5.16 in Pitman

We assume that the chocolate chips and mashmallows are randomly scattered in the
dough.

Question a) The number of chocoloate chips in one cubic inch is Poisson distributed
with parameter 2 according to our assumptions. The number of chocolate chips
in thre cubic inches is thus Poisson distributed with parameter 6. Let X denote
the number of chocolate chops in a three cubic inch cookie.

36-6+216-6
6 4-6

P(X§4)_e—6(1+6+§+ )—115-6_6—0.285

Question b) We have three Poisson variates X; : total number of chocolate chips and
marshmallows in cookie i. According to our assumptions, X; follows a Poisson
distribution with parameter 6, while X5 and X3 follow a Poisson distribution
with parameter 9. The complementary event is the event that we get two or
three cookies without chocoloate chips and marshmallows.

P(X1:O,X2:O,X3:O)+P(X1 > 1,X2:0,X3:0)

+P(X1:O,X2 > ]_,X3:O>+P(X1 :07X2:0,X3> 1)

=e%e e+ (1—-e%e e +e b1 —ee?+efe?1—e)=0

we are almost certain that we will get at most one cookie without goodies.
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Solution for exercise 3.5.18 in Pitman

Question a) The variable X is the sum of a thinned Poisson variable (X;) and a
Poisson distributed random variable (the immigration). The two contributions
are independent, thus X; is Poisson distributed. The same argument is true for
any n and we have proved that X, is Poisson distributed by induction. Ee denote
the parameter of the n’th distribution by A,,. We have the following recursion:

Ap == p/\n—l +p

with A\g = p such that

A= (1+p)p
and more generally
A = Zn:piu S
i=0 I=p

Question b) Asn — oo we get A\, — 7%-. This value is also a fixpoint of
p

Ap == p)\nfl +u
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Solution for exercise 3.5.2 in Pitman

Assuming the number of raisins in a cookie X can be described by a Poisson
distribution and that the mean value of X is A we get

PX>1)=1-P(X=0)=1—¢"

solving

gives
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Solution for exercise 4.1.1 in Pitman

Question a) We apply the result for the infinitesimal probability page 263,
and recall the standard normal density page 266

1 a1
xTr) = e 2
J(@) = <=
1
P(X €[0,0.001]) = £(0) - 0.001 = > e™2%.0.001 = 3.99 - 10
v

Question b) We follow the same approach as in a)

P(X €[1,1.001]) = f(1) - 0.001 = e 2 .0.001 = 2.42-10*

1
V2T
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Solution for exercise 4.1.2 in Pitman

Question a) The integral of f() should be one for f() to be a density (p.263).

We conclude ¢ = 3.

Question b) Using the definition of E(g(X)) page 263, we find the mean of

X to be - o g 5
/1:cf(:c)dx:/1 IFdIZE

Question c¢) The Computational Formula for Variance is still valid (page
261). We get

oo [e’s) 2
B(X?) = /1 2 f(x)dz = /1 xQ%dx =3, Var(X) = 3@) = %
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Solution for exercise 4.1.4 in Pitman

Question a) The integral of f(z) over the range of X should be one (see e.g. page
263).
1 1 2 9
x21—:c2dx:/:c2 <)—£CZ dx
| et —apar= | > (7))

using the binomial formula (a +b)" = >_" ( 7 ) a'b" .

2

[ (Z (?) <—x>i> Loy (?) [ coar=3 (3) ey [fg[ - L

1=0 =0 i=0

such that
f(z) =30-2%(1 — x)? 0<z<l1

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

/lef(x)dx — /01x30~x2 <i ( ’ ) (—x)i> do = 30§ ( ’ ) (~1) lf:i[; =

1=0

which we could have stated directly due to the symmetry of f(z) around %, or
from page 478.

Question c) We apply the computational formula for variances as restated page 261.

Var(X) = BE(X?) — (B(X))?

s = 1 (5 (3 ) o) o= () o 5] -

i=0 i=0 z=0

such that

which can be verified page 478.

3-3 1
SD(X35)* = = _—
(Xs3) (3+3)2(3+3+1) 28
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Solution for exercise 4.1.5 in Pitman

Question a)

Question b) We apply the formula on page 263 for a density

Pla< X <b) :/bf(x)dx
We get

P X i 1 d ’ 1 d i 1 d
1< < 2) = - — - - -
(Fl=X<2 /_12<1+|a:|>” /_12<1—x>2“/02<1+x>”

SN T S O ARG S RS SN IR B S
20 -a2) |, 2(1+x) 2 4 2 6 12

=0

Question c) The distribution is symmetric so P(|X| > 1) = 2P(X > 1) =2 [ 2(1ix)r:oo -
1

=
R

Question d) No. (the integral foooxmdx does not exist).
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Solution for exercise 4.1.9 in Pitman

We first determine Sy and Var(S,). From the distribution summary page 477 we have
E(Sy) = 43 = 2 and due to the independence of the X;’s we have Var(Sy) =455 = 3.
(the result from the variance follows from the result page 249 for a sum of independent
random variables and the remarks page 261 which states the validity for continuous

distributions). We now have

3—2

P(S;>3)=1-a =1-®(1.73) = 1 — 0.9582 = 0.0418

1

3
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Solution for exercise 4.1.12 in Pitman

Question a) First we determine the total area of the figure, which is 8. The

area of the triangle with z-coordinate less than or equal to z is 3(z +

2)-2(x+2) = (z+2)* forx <0 and 8—1(2—2)2(2—2) = 4+ 4z —2” for
0 <z <2, such that P(X < z) = @ for x < 0. To find the density
f(z) we consider P(z < X <z + Ax) for Az small. We get

2 2 2
((z+Az) +2)° (z+2) :r+2AI+(Ar) .
8 8 4 8

2 _9 < p <)
— 4 - =
f(x)—{% 0<z<2

Plx < X <z+Az) =

We now find

Question b) We can write the density as

24+ 2) —2<z<0
f(x)_{2c(1—x) 0<z<1

From integration (or by considering the area of the figure) we find ¢ = %

Question c) The four lines defining the square are: y = 2z — %,y =2-

1 _ . _ 1 1 ‘-
57,y = 2r + 2 and y = —5x — 5. The area of the square is 5. Now

considering P(x < X < z +dz) for —1 < z < 0. The triangle defined
by the vertical line through z,y = 2z + 2 and y = —%x — % has area
t7(2042——3x—3 = Z(z+1)%. We find the area of the triangle defined
by the vertical line through z + dz,y = 2z + 2 and y = —%x — % to
1(z+dz+1)? and derive f(z)dz = (z+1). By using similar arguments
for the intervals (0,1) and (1,2) we get

flz) = 1 0<z<l1
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Solution for exercise 4.1.13 in Pitman

Question a) We derive the density of the distribution

_Je(z—=09) 09<2<1.0
f@)_{ cl1—z) 10<z<l1l

We can find ¢ the standard way using fol_'gl f(z)dz = 1. However, we can derive
the area of the triangle directly as % -0.02 - ¢ such that ¢ = 100. Due to the

symmetry of f(z) we have P(X < 0.925) = P(1.075 < X).

0.925 =0.925

P(rod scrapped) = 2P(X < 0.925) = 2/

0.9

1
10(z—0.9)dz = 20 {Eﬁ — 0.9:[:1

=0.9

Question b) We define the random variable Y as the length of an item which has
passed the quality inspection. The probability

P0.95< X <105 075 08
P(0.925 < X < 1.075) 09375

P(0.95 <Y < 1.05) =

The number of acceptable items A out of ¢ are binomially distributed. We de-

termine ¢ such that
P(A >100) > 0.95

We now use the normal approximation to get

>0.95
0.4,/c ) =

100 — 0.5 — 0.8 - ¢
0.4,/c

1_(I)<100—0.5—0.8-c

< —1.645

and we find ¢ > 134.
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Solution for exercise 4.2.1 in Pitman

We us(e)the knowledge of the half-life to find A from example 2 page 282,
A= o

Question a) The probability that an atom survives at least 5 years is given
by the survival function page 279. We get with T" denoting the life time
of an atom )

5) — e 5In(2) —
P(T>5)=e¢ =33

Question b) If we let N; denote the number of atoms surviving at time ¢,
then the distribution of this random variable will be binomial with the
probability found in the previous question. Thus N; € bin (n,e @),
where n = Nj is the original number of atoms. The expected value E(N;)
of this binomial distribution is given page 476 or 479 in the distribution
summary, such that E(N,) = ne '™® . We find ty0% as , using the
method on page 282 once more,

—1In (0.1)
In(2) °

—tIn(2) __ ﬁ = tm% _

ne = 10

Question c) Applying the same method to find the time where the expected
number of atoms remaining of 1024 is 10 (¢*), we get

In (1024)
In (2)

Question d) This question can be formulated as P(N; = 0). From the
binomial distribution of Ny we get

1023 104
(%) = 0.3677

1023 1024 1 1024
— =(1—- —— Ze L
<1024> < 1024) ¢

1024e 7 = 1 = ¢+ = =10

or




IMM - DTU 02405 Probability
2003-10-23
BFN /bfn

Solution for exercise 4.2.4 in Pitman

Question a) We define T; as the lifetime of component . The probability in question
is given by the Exponential Survival Function p.279. The mean is 10hours, thus
A=0.1h"1

P(T; > 20) = e %1% = ¢72 = 0.1353

Question b) The problem is similar to the determination of the half life of a radioac-
tive isotope Example 2. p.281-282. We repeat the derivation

In2
P(T, < tspn) = 0.5 < e Mo0% = 0.5ty = DT — 6.93

Question c¢) We find the standard deviation directly from page 279

SD(T}) = ~ = 10

> =

Question d) The average life time T of 100 components is

1 100
T-—5S'1

We know from page 286 that T is Gamma distributed. However, it is more
convenient to apply CLT (Central Limit Theorem) p.268 to get

_ _ 111
P(T>11)=1-P(T<11)=1 - (TO) —1—®(1) =0.1587

100

Question e) The sum of the lifetime of two components is Gamma distributed. From
p.286 (Right tail probability) we get

P(Ty + Ty > 22) = e "1#(1 4 2.2) = 0.3546
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Solution for review exercise 1 (chapter 1) in Pitman

Solution for exercise 4.2.5 in Pitman

Question a) The time between two calls in a Poisson process is exponentially dis-
tributed (page 289). Using the notation of page 289 with A = 1 we get

PW,;<2)=1-e"2=0.8647

Question b) The distribution of the time to the arrival of the fourth call is a Gamma
(4, \) distribution. We find the probability using the result (2) on page 286

25 125 118
P(T4§5):1—€_5 <1+5+?+?> :1—76_5:0-735

Question c)

BE(Ty) =~ =4

4
A
using (3) page 286.
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Solution for exercise 4.2.8 in Pitman

We introduce the events M; that the transistor is produced on machine 3.

Question a) Using the Rule of Average Conditional Probabilities page 41 we
get
4 .
P(X > 200) = P(X > 200|M,)P(M;)+P(X > 200|My)P(Ms,) = e*%EJre*%% = 0.2904

Question b) Similarly

1 2 500
E(X):100-§+200-§:‘)3

Question c¢) To find the variance we use the Computational Formula for Vari-
ance page 261. We introduce X; to be the lifetime of a transistor pro-
duced by machine i. We use the Computational Formula inversely to get

2
B(X?) =V (X;) + (B(X))* = 2
where F(X;) = )\% is the mean lifetime of a transistor produced on ma-
chine 7. ) 5
E(X?) = E(Xf)g + E(Xg)g = 6100
Finally

500\ 29
Var(X) = 6- 1002 — <%) =5 - 100°
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Solution for exercise 4.2.9 in Pitman

Question a)

I(r+1) = / z'e dr = [xr(—e_”)]go—/ ra" ™ (—e™*)dz = 7"/ re’te ™ dr = rl'(r)
0 0 0

Question b) For r = 1 we have

I'(1) _/ e fdr =1
0

and the result is proved by induction.

Question c)
BE(TM) = /Oo t"f(t)dt = /OO t"etdt =T(n+1)
0 0

Var(T) = E(T?) — (E(T))> =T(3) - (['(2))*=2—-1=1

Question d) We introduce the random variable Y = AT". The survival func-
tion of Y Gy (y) can be derived through

Gy(y) = P(Y > y) = PO\ > ) :P<T> %)

Now P(T > x)e ** such that
Gy(y) = e M =eV
the survival function of an exponential(1) variable. Now

1 n!
E(T")=—E((\)")=—
(1) = BT =
since E((AT)™) = n! (the variable Y = AT is an exponential(1) dis-
tributed random variable).
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Solution for exercise 4.2.10 in Pitman

Question a) We define 77 = [ (') such that
PMi=0)=1-PT>1)=1-¢?

using the survival function for an exponential random variable. Correspondingly

P(K =k)=P(T > k)—P(T > k+1) = e M—e M) = 7MW (1 —¢74) = (e’)‘)k (1—e™)

a geometric distribution with parameter p =1 — e,

Question b)

Pm =€

Question c¢) The mean of the geometric distribution of T, is

E(Tm) Pm

The mean is measured in % time units so we have to multiply with this fraction
to get an approximate value for E(T)
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Solution for exercise 4.3.1 in Pitman

Question a) The survival function G(t) = P(T > t) is introduced and de-
fined page 297

P(T<b)=1—P(T >b)=1—-G(b)

Question b)
Pla<T <b)=P(T<b)—P(T <a)=G(a) — G(b)

(P(T < a) = P(T < a) for a continuous distribution).
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Solution for exercise 4.3.2 in Pitman

We first show that a constant Hazard rate implies an exponential distribution.
Using (7) page 297
G(t) — efg’ adu — M

the survival function of an exponential distribution. The density of an expo-
nential distribution with parameter(intensity) X is f(t) = Ae™*. The hazard
rate is found using (6) page 297

and the proof is complete.
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Solution for exercise 4.3.3 in Pitman

Question a) We find G(t) using (7) page 297

Glt) — o o s du _ —alnru)liZh _ et (BY) (1 n %) ¢
This is a Pareto distribution. The Pareto distribution is one of the
generic distributions with important applications in economics (income
distributions), insurance (claim size distribution), geology (distribution
for strenght of earth quakes), and telecommunications (duration of in-
ternet connections).

Question b) We find f(t) using (5) page 297

RN G YOO
dt dt b b

ft) =
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Solution for exercise 4.3.4 in Pitman

The relation between the hazard rate A(t) and the survival function G(¢) is given by
(7) page 297

G(t) — e~ f(f Mu)du
a—1

Now inserting A(u) = Aau

G(t) _ e—fot Aawe—tdu _ e—/\[ua]Zié _ e—)xta

Similarly we derive f(t) from G(t) using (5) page 297

dG(t o o
ft) = ——C;E ) = —e M (=Aat*h) = Aat® e
Finally from (6) page 297
A ta—l — At
At) =28 C et

ef)\to‘
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Solution for exercise 4.3.6 in Pitman
The hazard rate is given by

5 <
A1) :{ 0.05 t<10

0.1 ¢t>10
Question a) Using the relation (7) page 297 we get

G(t) = e~(100054501) _ o1

Question b)
e=00 <10
G(t) - { e~ 050-01(t=10) ¢~ 10
Question c) Using (5) page 297 we get

0.05e~0-05¢ t <10
f(t) = { 0.1e70-5¢-01(t=10) ¢~ 10

Question d) We calculate the mean using (8) page 299.

[} 10 [
E(T) = / G(t)dt = / e 00t Qg +em0 / R
0 0

10

0.

1
0

ot

(1— %) 45

—0.5

e 90—10e70%

0.10
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Solution for exercise 4.4.1 in Pitman

We apply boxed results page 304. First we introduce Y = g(X) = ¢X and
note that g() is strictly increasing. We have
y dy

— =c

fx(z) = Xe™ for 0 < y=g(z)=c-ux, T2, -

Inserting in the formula

e e A
frly) == =Ze  0<y<1
C C

such that Y follows an exponential distribution with parameter(intensity) %

Alternative solution using cumulative distribution - sec-
tion 4.5

We define a new random variable Y = ¢X. The distribution of Y

P(ng):P(cng):p(ng):1_67%:1_6,%9
C
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Solution for exercise 4.4.2 in Pitman

The result is obvious, think of the factor A as a change of scale, i.e. time
measured in hours rather than seconds, length measured in centimeters rather
than inches etc. A formal proof is as follows.

Alternative solution using cumulative distribution - sec-
tion 4.5
P(Tgt)P(?gt) = P(Ty < Xt)

Now inserting in the expression given by (2) page 286 shows that T is Gamma
(r, A) distributed.
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Solution for exercise 4.4.3 in Pitman

First we introduce Y = ¢g(U) = U? and note that g() is strictly increasing on |0, 1[. We
then apply the formula in the box on page 304. In our case we have

d
fx(x)=1for 0 <z <1, y = g(x) = 2%, T =Y, Y op =2 Y
dx

Inserting in the formula

Alternative solution using cumulative distribution - section 4.5

Fya(y) = P(U* < y) = PU < V§) = Vi

The last equality follows from the cumulative distribution function (CDF) of a Uni-
formly distributed random variable (page 487). The density is derived from the CDF
by differentation (page 313) and

o) - ) 1

O0<y <1



IMM - DTU 02405 Probability
2003-11-12
BFN/bfn

Solution for exercise 4.4.6 in Pitman

We have
tan (®) =y

and use the change of variable result page 304 to get

dtan ()

R =1+tan(®)* =1+ 4>

Now inserting into the formula page 304 we get

1

——, oo <Y < 0
p y

fr(y) =

The function is symmetric ( fy (y) = fy(—y)) since (—y)? = 3?, but

“ 1 1 1
/0 y-;1+y2dy:%ln(1+a2)—>oofora—>oo

The integral [*° yfy(y)dy has to converge absolutely for E(Y) to exist, i.e. E(Y)
exists if and only if F(]Y|) exists (e.g. page 263 bottom).
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Solution for exercise 4.4.9 in Pitman

Question a) Using the one-to-one change of variable results page 304 we get

Y=g(T) =TT =Y W= at!

1

ta—1 - /\e_Ay
ato—

fY(y) —_ )\ata—le—/\t“

the exponential density.

Question b) Once again using the one-to-one change of variable results page
1t i_
Cl=Ll2im(U))a!

1 _ a
304W0getT:g(U):(—iln(U))a’U:e AT El=£1
1 1 ,
t) = — = dae () e = e

PO T "

a Weibull(\, @) density.

Alternative solution using cumulative distribution - sec-
tion 4.5

Question a)
P(T* < t) = P(T < tw)

Since T has the Weibull distribution we find
P(T < z) = Fyei(z) = / Aau® e ™ du = [e a] o
Jo u=
Now inserting = = ta we get

P(T*<t)=1- e_*<“”) —l—eN
which shows us that T has an exponential distribution.
Question b) We examine the random variable Y = (=A~LIn (U))=.

P(Y <y) = P(-A"'In (U)% <y) = P((-3""In (U)) < y*)

=P(In(U)>-\*)=PU>e™)=P1-U<1-e)

1




Now since U is uniformly distributed so is 1 — U and we deduce
PY<y)=PU<1l—eM)=1—¢

where the last equality follows from page 487 (cumulative distribution
function), which was to be shown.
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Solution for exercise 4.4.10 in Pitman

Question a) First we introduce Y = ¢g(Z) = |Z| and note that g() is strictly
increasing on |0, oo, and strictly decreasing on | — oo, 0. We then apply
the formula in the box on page 304 and the many to one result on the
top of page 307. In our case we have

1 d
R B CEIE B

V2r

Inserting in the formula

2 1
frly) = \/:62742 0<y< oo

Question b) We introduce Y = ¢(Z) = Z2.

1 a1, dy
fZ(z):\/?e 22 y=g(2) = 2% z =/, &:2z:2\/§

Inserting in the boxed formula page 304 and once again using the many
to one extension.

Ty
= e 2
W= omy
This is a special case of the x? distribution, here with 1 degree of freedom.

The general case is introduced page 365. The distribution is extremely
important in statistics (and probability).

O<y<oo

Question ¢) We introduce Y = g(Z) = £. With Z = 5 and d%(j) =—-3
we get
1 1,01 1 1
= e —=———-e %, —0o<y<0;0<y<oo
) =7 N y y
Question d) We introduce Y = g(Z) = . With Z = % and d%_(zz) =-2%
we get
1 2 1 1
fr(y) =2 e =~ W 0<y<oo

27 Zzg Y\/yv2m

the factor 2 stems from the many to one situation page 306/307.




IMM - DTU 02405 Probability
2004-23-3
BFN/bfn

Solution for exercise 4.5.1 in Pitman

Question a) The survival function of the exponenital distibution is - page
279 -
P(T>t)=e™

thus the cumulative distibution function F'(¢) is

Ft)=P(T<t)=1-P(T>t)=1-¢™
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Solution for exercise 4.5.2 in Pitman

Question a)

Question b)

1
PX<a)=1-PX>2)=1-PX>a+1)=1-
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Solution for exercise 4.5.4 in Pitman

The operations considered are shifting (addition of b) and scaling (multiplication by
a). We introduce Y = aX + b. The distribution Fy(y) of Y is given by

Fy(y)=P(Y <y)=PaX +b<y) = PlaX <y—b)

For a > 0 we get
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Solution for exercise 4.5.6 in Pitman

Question a) From the definition of the cumulative distribution function page
313 we get

r(rzt)-or(xed) 1o (rvel)

where the last equality is true for continuous distributions.

plxst)oiop(xet) ()]

Question b) The density is the first derivative of the CDF for a continuous
distribution (page 313), thus

B dF(x)

= 322
dz v

f(z)

Question c¢) We calculate the mean from the definition page 261
1 1 3
E(X) / xf(z)dx / r-3r%dr = =
0 0 4

Question d) The variables Y7, Ys, and Y3 are all uniformly distributed with
CDF Fy(y) = y (see eg. page 315). The discussion on the distribution
of maximum of n indpendent random variables page 316 tells us that
Z = max (Y1,Y3,Y3) with CDF Fy(z)

Fy(z) = P(Z < 2) = Plmax (Y1, Yo, Y3) €2) = PV € 2,3 S 2,Y3 < 2)

=PV, <2)P(Ya< 2)P(Ys<2)=2°
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Solution for exercise 4.5.7 in Pitman

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the
inverse problem in a special case. We apply the standard change of variable

method page 304
, dy 1
Y =VT,T=Y? -2 =—
dt Vit
fr(y) =21 -ye
a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page
310.

Question b)
/ 2)\y26_’\y2dy:/ )\yQG_Adey
0 —

oo

We note the similarity with the variance of an unbiased (zero mean) normal
variable.

o © , for | 1% T, 1 1
My2e M d :)\/ 2, /20 (220 TR dy = A —/ 2~ ¢ ?hd
/oo / Y Ve L Y AN y

the integral is the expected value of Z2, where Z is normal (O, %) distributed.
1

Thus the value of the integral is 55 Finally we get

E(Y) = VArE(Z?) = VarVar(2)

1 1 /=« )
—\/)mﬁ == 5\/;—0.51 with A =3

Question c¢) We apply the inverse distribution function method suggested page 320-
323. Thus

U:1—eAX:X:—§1n(1—U)

Now 1 — U and U are identically distributed such that we can generate an expo-
nential X with X = —$1In(U). To generate a Weibull (o = 2) distributed ¥ we

take the square root of X, thus Y = {/—5In (1 - U).
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Solution for exercise 4.5.8 in Pitman

We let X; denote the lifetime of the ¢’th component, and S denote the lifetime of the
system.
Question a) We have the maximum of two exponential random variables S = max (X3, X3).
P(S <t) = P(max (X1, X5) <t) = (1—e™M) (1 —e ™)
from page 316 and example 4 page 317/318. Thus

P(S>t)=1- (1 _ 6—)\1t) (1 _ 6—)\2t) _ Mt g hat _ —(uhe)t

Question b) In this case we have S = min(X;, X5) and we apply the result for the
minimum of random variables page 317. The special case of two exponentials is
treated in example 3 page 317

P(S<t)=1—¢ th)t

Question c) From the system design we deduce S = max (min (X7, X5), min (X3, X4))
such that
P(S<t)= (1 _ e*()\1+/\2)t) (1 . 67()\3+)\4)t)

Question d) Here S = min (max (X, X3), X3) such that

P(S S t) —_ 1_(1 . (1 . 67)\1t) (1 . e*/\zt)) e*)\gt — 1_ef()\1+)\3)t_67()\24»)\3)1‘,_’_67()\1+)\2+)\3)t
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Solution for exercise 4.6.1 in Pitman

We introduce the random variables X;;i = 1,2, 3,4 for the arrival time of the
i’th person. For convenience X; will be the deviation from 12 noon measured

in minutes.

Question a) Since X; are continuous random variables the question can be

stated as
P(min X; < —10) = P(min X; < —10)

From the result page 317 and the normality of the X;’s we get

1 4
PminX; < 10)=1— (1 By (—0>> = 1-0.9772" = 0.088
7 J

(compared with the probability 0.0228 that a specific person will arrive
before 11.50)

Question b) This question can be stated as

—15\*
P(max (X;) > 15) = 1- P(max (X;) < 15) = 1-® < - 0) =1-0.9987* = 0.0052

i z 9
from the result regarding the distribution of the maximum of indpendent

random variables page 316.

Question ¢) The question regards the second order distribution i.e. the dis-
tribution of X where Xy < X9y < X3y < Xy). The expression
for this density is stated page 326. With x = 0, dz = 2 - %, and

f(z) = 5\/156—%(%)2 (page 267) we get

1 1 2 3 1 21 /1\?
Pl-< X, ,<Z|= 0= =14 —— 1 =] =0.0399

(we have used F'(0) = ® (%2) = 1)
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Solution for exercise 4.6.3 in Pitman

Question a)

Question b)

P(Uywy > z,Upy >y) = P(Uny > 2)—P(Upy > 2,Upny <y) = (1—2)" — (y—=)"

Question c)

PUny <2,Upny <y)=PUuw <y)— PUy =2 2,Un <y)=y"— (y—2)"

Question d)

Question e)

Question f)
k<zn—k—1>y

one in between
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Solution for review exercise 1 (chapter 1) in Pit-
man

Solution for exercise 4.6.4 in Pitman

Question a)
P(Z:l):P(S<T):P(SgT):P(TgS):P(Z:O):>P(Z:1):P(Z:o):%

Question b) It is intuitevly tempting to claim that X and Z are independent.
This is an example where intuition is correct. However one should be
careful and should be able to verify with rigourous arguments.

P(X<z,Z=1) PS<z,S<T)

P(Z=1) I

P(X<a|Z=1)=

Now
PX<z)=PS<z,S<T)+P(T<z2,T<S)=2PT<z,T<5)

Inserting we get

P(X<z)

PX<z|Z=1)=—2—=P(X <2)

2

A similar argument shows the independence of Y and Z.

Question c) Indpendence between which variable attains the k’th order statis-
tic and the value of the £’th order statistic.
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Solution for exercise 4.6.5 in Pitman

Question a) The probability P(X; < z) = z since X; is uniformly distributed. The
number N, of X;’s less than or equal to x follows a binomial distribution bin(n, z)
since the X; are independent. The event {X ) < x} corresponds to {N, > k}.
We get

n

P(X(k)§$):P(Nka):Z<

i=k

n

; ) (1 —x)
Question b) From the boxed result at the bottom of page 327 we have that (X ) has
beta(k,n — k 4+ 1) distribution. Substituting r =k and s =n — k + 1 we get

r+s—1

r+s—1 i s+r—i—
P(X(k)ga:):Z( . )x(1—$)+ !

i=r
which is the stated result.

Question c) The beta(r, s) density is

1) = g a0 = g (°7") e
Now
P(Xw <) = /Ox f(x)dz = /Ox B(i, S)u“l :: ( y ; L ) (—u)'du
g [ (e S () S

as was to be proved.
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Solution for exercise 5.1.1 in Pitman
Question a) Consider the area of the support for the density to get

.
12 P(X<1) =~

P(X>1)= D

O horet
—_

or integration of

1 pd 1 1
1 _ 41
//—dyd:c:/ 4 L 2:1
G .6 6 12

Question b)

2 «? 2 =2
1 1 171, 1 5
/ / —dydzr = —/ (2 — 2)dr = = | z2® — =27 =2
1 Js 6 6 J; 613 2 ], 36

(note that 22 < z for 0 <z < 1)
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Solution for exercise 5.1.2 in Pitman

Question a) Let X; denote the random value of the result of the i’th mea-
surement (¢ = 1,2). The density of X; is given by

s -t <z<it s
f(2) { 0 elsewhere

with cumulative distribution function

0 xﬁl—%
Fz)= 5(z—(I—3)) - <z<l+15
1 l+%§x

We find directly or using
1 1 1 1
Pll-—<X;<l+—|=F|l+—|-F(l—— ] =0.
< oo < ST 100) ( * 100) < 100) 01
Question b) This is example 3 page 343 with different parameters.

1-25 19 2:1—09025:00975
100 ' )
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Solution for exercise 5.1.4 in Pitman

Question a) This is Example 3 page 343 with different numbers
P(Y - X| <0.25) = 1 — 22 3\ _ 7
- 2\4) 16

Question b) We see that the probability can be rewritten This is example 2 page 343
with different values. We get

Question c)

PY >X,Y >025) P >X)-PY >X,Y <0.25)
P(Y > X|Y > 0.25) = _
(¥ =z X] ) P(Y > 0.25) P(Y > 0.25)

N[
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Solution for exercise 5.1.5 in Pitman

We note that the percentile U of a randomly chosen student is uniformly(0,1) dis-
tributed.

Question a)

P(U>09)=1—PU <0.9)=0.9

Question b) The question is Example 3 page 343 the probability of a meeting with
different parameters. Denoting U; and U, respectively as the rank of the two
students

P(|U, — Uy > 0.1) = 0.9 = 0.81
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Solution for exercise 5.1.6 in Pitman

Question a) Define A; and A, as the arrival times of Jack and Jill respec-
tively. The probability in question is

1
P(A2>A1+2):—<

= 0.3756

2\ 15 450

13)2 169

Question b) As in the textbook we will denote Ay as the smallest and Ay
as the largest of the ten arrival times. The probability in question is
P (A(l) < 5,10 < A(lo))- This probability has been analyzed in exercise
4.6.3 d) page 330. From that exercise we derive

2 10 92 10
P(A(l) < 5, 10 < A(lO)) = 1—(1—x)”—y”+(y—x)” = 1—(—> — (-) +<

3 3

L oon
=1- @(2 —1)
can be solved this way using E.4.6.3, I am looking for a shortcut before
finishing the solution. However 4.6.3 is scheduled two weeks before this

one.

1 10
3
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Solution for exercise 5.2.1 in Pitman
Question a) A nice drawing The area of the figure (shaded area) is 1.

flzy) =1, 0<ly <z

Question b) We find the marginal distribution of X by integrating over y for
fixed = (page 349)

fx(iv):/ 1-dy = 2z, O<zr<l1

—T

Similarly for positive y

1
fY(y)_/l-da:—l—y, O<y<1
Yy

and for negative y

1
fy(y)_/ l-de=1+y, —-1<y<0
-y

leading to a general expression for fy (y)
frly)=1-ly, —-l<y<l
Question ¢) No. (e.g. P([Y][>4X <) =04£1=P(]Y]>1).
Question d) From the definiton of E(X) page 261 (page 332)
! 2
E(z) —/ x-2zdr = =
0 3

The distribution of Y is symmetric around 0 so E(Y') = 0.
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Solution for exercise 5.2.4 in Pitman
We can rewrite the density
f(z,y) = 223

to see that X and Y are independent expontially distributed random variables
which basically solves a)-c). Alternatively:

Question a) The area B page 349 is defined by the rectangle 0 < u < z,0 <
v <y.

x Yy z Yy
P(X <z Y <y)= / / f(u,v)dvdu = / / 2e™"3e 3 dvdu
o Jo o Jo

= / 2e™ 2 (1 — e_3y) du = (1 — 6_21) (1 — e_gy)
0

Question b)
fx(z) =2

Question c)
fr(y) =3e™™

Question d) The variables X and Y are independent since

flz,y) = fx(2) fr(y)
for all (z,y).
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Solution for exercise 5.2.6 in Pitman

Question a) Draw a small figure showing the area of integration. Using page
349 we get

o=

i 1 1
P(Y >2X) = /2 / 90(y—x)*dydr = /2 [10(y — )] zz;x dz = /2(10(1—30)9—10:59)(130
0 Jo 0 0

10, 101%=% 1"
= [-(z 1) = 2] "2 —1—2<2>
Question b) The marginal density of X is given by (using page 349)
1
fx(z) = / 90(y — z)%dy = 10(1 — z)*
with CDF ”
Fx(z) = / 10(1 —u)?du=1— (1 — )"
0

The marginal density of Y is given by (using page 349)
Y 8 9
Fri) = [ 90y = )%y = 10y
0

with CDF

Yy
Fy(y) = / 10udu = y*°
0

Question ¢) Maximum and minimum (see exercise 4.6.3). Also note that the
marginal distributions are those of max and min from page 316/317.
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Solution for exercise 5.2.7 in Pitman

We denote the radius of the circle by p. The are of the circle is wp?. If a chosen point
is within radius r it has to be within the circle of radius r with area 7r%. We find the
probability as the fraction of these two areas

2

F(r) = P(Ry <r) = =

p
with density (page 333)
_ dFg(r) 2
frlr) = dr  p?
With R; and R, indpendent we have the joint density from (2) page 350
4drr
f(rh TQ) = pl4 2

We now integrate over the set ry < 3 (page 349) to get

R P74 1 [r 1
PR, <) = / /2 nr drodry = —/ ridry = =
2 o Jo p* 2p* Jo 8
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Solution for exercise 5.2.8 in Pitman

Question a) We find the marginal density of Y by integrating over x (page 349)

v 4
frlo) = [ el = e e = gyt

-y

We recognize this as a gamma density (1) page 286 with A = 1 and r = 4 thus
1

C:§

Question b) With Z = g(Y) = 4Y3, d%_(yy) = 122 Y = (%)%, using the boxed

result page 304 we get

Question ¢) We have | X| < |Y| =Y. Thus E(|X|) < E(Y) =4.
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Solution for exercise 5.2.11 in Pitman
Question a)
EX+Y)=EX)+EY)=15
from the general rule of the expectation of a sum.

Question b)
E(XY)=E(X)E(Y) =05

by the independe of X and Y.

Question c)

E(X -Y)?) = BE(X?+Y?-2XY) = BE(X?) + E(Y?) — 2EB(XY)

= (Var(X)+(B(X))2) +(Var(Y)+ (E(Y))?) —2B(XY) = 1—12+%+1+1_1 - g

from the general rule of the expectation of a sum, the computational formula for
the variance, and the specific values for the uniform and exponential distributions.

Question d)
E(X?¢) = E(X*)E (e*)

We recall the general formula for E(g(Y')) from page 263 or 332

where f(y) is the density of Y. Here Y is exponential(1) distributed with density
fly) =1-e71v. We get

E (ezy) = / e?1 - e Ydy = 0o
0

thus £ (X%e?") is undefined (o).
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Solution for exercise 5.2.15 in Pitman

Question a)

Pla< X <bc<Y <d)=P(X<bc<Y <d)—P(X<a,c<Y <d)
=P(X<bY<d)-P(X<bY<e)—(P(X<aY <d)—P(X<aY <c))
=PX<bhY<d)—-PX<hY<c)—PX<aqY<d+PX<aY<c

= F(b,d) — F(b,c) — F(a,d) + F(a,c)
This relation can also be derived from geometric considerations.

Question b)

Flo,y) = / Oo / 1 F(u, v)dudo

d*F(z,y)
dxdy

Question c)
f(z,y) =
from the fundamental theorem of calculus.

Question d) The result follows from (2) page 350 by integration.

Faw)= [ [ ss@sdide = [ feloe [ ety = Fs@Fr (o

Alternatively define the indicator I(z,y) variables such that I(z,y) = 1if X <=z
and Y < y and 0 otherwise. Note that F(z,y) = P(I(z,y) = 1) = E(I(z,y))
and apply the last formula on page 349.

Question e) See also exercise 4.6.3 ¢). We find
F(z,y) = P(Un) < 2,Uw) <y) = P(Uw) <y) = P(Uy) > z,Un) <y)
We find the density as

d*F(x,y)

il = nln =)y - o)
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Solution for exercise 5.3.1 in Pitman

Question a) With R being the distance from the bulls eye to the shot we
have (page.360 line b.4)

thus

Question b)

we get i -0.4712 = 0.1178 due to the symmetry.

Question c¢) We are considering only the second coordinate, which is a stan-
dard normal variable. The mean of the absolute value is given page 484.

2

™

Question d) This is the probability that the absolute value of the first coor-
dinate is less than or equal to r = 1.1777. ...

(20(r) — 1)=(28(1.18) — 1) = 0.762

Question e) This is the probability that the absolute value of largest of the
two coordinates are less than or equal to 7.

(2®(r) — 1)2=(20(1.18) — 1)? = 0.581

Question f) Use rotational symmetry and find similarly to e)

(20 <%> —1)2 = 0.352

Question g)
1
5(2c1>(r) —1)2=0.29
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Solution for exercise 5.3.3 in Pitman
Question a)
PW+X>Y+Z+1)=PW+X-Y—-Z>1)

The variable V.= (W + X — Y — Z) € Normal(0,4) Thus

V-0 1
PW+HX >Y+Z+1)=P(V>1)=P <T > 5) =1-d (—) = 1-0.6915

Question b)

PAX +3Y < Z+W)=PAX +3Y —=Z—-W <0) =05

Question c)
E(4X +3Y =222 —W?+8) =4E(X) +3E(Y) —2E(Z*) — E(W?) +8

from the standard result: the expectation of a linear expression is the
linear expression of the expectations.

4E(X)+3E(Y)—-2E(Z*) —E(W?)+8=-2—-1+8=5
since X,Y, Z, W are standard normal variables.
Question d)
Var(3Z —2X +Y +15) = War(Z) + 4Var(X) + Var(Y) = 14

since X, Y, Z are independent and standard normal variables.

SD(3Z —2X +Y +15) = /Var(3Z —2X +Y + 15) = V14
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Solution for exercise 5.3.6 in Pitman

Question a)

rvo -5 -1-0 ()

1—(1—®(1))?

Question b)

Question ¢) Drawing helpful, suggests that the following should be true
®(1) — @(-1)

Question d)

P(1>max(X,Y)—min(X,Y)=P(1>|X-Y|) =& (i) —<1>(
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Solution for exercise 5.3.9 in Pitman

Question a) We will do all the calculations in inches, noting that 1 foot is
12 inches. We have the distribution of the largest observation from page
316

76 — 70

100
P(X(100) > 76) = 1—P(X(100) < 76) = 1—<<1> ( )) =1-0.9987"" = 0.122

(Pitman 0.130777? which is what you would get with P(X(100) < 76) =
0.9986)

Question b) The average of X of the 100 observations is given by X =
ﬁ Zjﬁﬂ X;. We have from the boxed result page 363 that Zjﬁﬂ X; is
normally distributed implying that X is normally distributed. We find
mean and standard deviation of X using the Square Root Law page 194

such that

7 70.5 — 70
P(X >705)=1—a (%) = 1— ®(2.5) = 0.0062

V100

Question c) Page the Central Limit Theorem (e.g. page 386) can be applied
in case b). Limit theorems exists for maximum and minimum of random
variables (extreme value distributions). These results depend on the
specific form of the distribution of the individual X;’s. One can easily
construct counterexamples to disprove the generality of a), like uniformly
distributed X;’s.




IMM - DTU 02405 Probability
2003-11-19
BFN/bfn

Solution for exercise 5.3.12 in Pitman

Question a) Let the coordinates shot ¢ be denoted by (X}, Y;). The difference between
two shots (Xo — X3,Ys — Y)) is two independent normally distributed random
variables with mean 0 and variance 2. By a simple a scaling in example 1 problem

2 page 361 we get E(D) = v2,/3 = /7.
Question b) We have E(D?) = 4 thus Var(D) =4 — 7.
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Solution for exercise 5.3.15 in Pitman
Question a) This is exercise 4.4.10 b). We recall the result Introducing Y = ¢g(Z) =
ZQ

1, dy
fo(e) = o= y=g(s) =2 i=E L =2=2f

Inserting in the boxed formula page 304 and use the many to one extension.

1 v
fr(y) = e"2 0<y< o

V2TYy

We recognize the gamma density with scale parameter A = % and shape parameter
r= % from the distribution summary page 481. By a slight reformulation we have

1
B -
2 -3

and we deduce have

Question b) The formula is valid for n = 1. Assuming the formula valid for odd n

we get
n+ 2 n
Gamma (") — 1 (2 41)
amma( 5 ) 2+

The recursive formula for the gamma-function page 191 tells us that I'(r + 1) =
rI'(r) and we derive

Gamma (”_”> _nyan-1)!

2 ) T 29w (1))

Question c) Obvious by a simple change of variable.

Question d) From the additivity of the gamma distribution, which we can prove
directly

Question e) From the interpretation as sums of squared normal variables.



= n.

ool

Question f) The mean of a gamma (r, A) distribution is {, thus x™ has mean

The variance of a gamma (r, A) distribution is yz, thus the variance of x" is

: = 2n. Skewness bla bla bla

NI
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Solution for exercise 5.4.1 in Pitman
Question a) The joint density of (X, X3) is

OS.TlSl,OSIQSQ

0 otherwise

flay,zo) = { 2

We find )
P(X;+ X, <2)= / —dzdz,

r1+12<2

or use straightforward area considerations, to get P(X; + X, < 2) =2

Question b) We use the boxed expression page 372 to get

fozl~%dxl 0<z2<1
fx1+zz(z) = fol L- %dxl 1<2<2

fl_Ql-%dxl 2<2<3

z

thus

5 0<z<1

fz1+zz(z) = % 1<z<2

3% 2<2<3

Question c)
% 0<z<1
Fx1+xz(z) = / fx1+x2(u)du = 2%_1 I<z<2
0
6z—22—5 92 S P
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Solution for exercise 5.4.2 in Pitman

Question a) Consider the joint distribution on the unit square. The area of

the triangle z +y > 1,z < 1,y < 1is §, thus Fg,(1.5) =1 — % = L.

Alternatively one could use the boxed result page 372 with Sy = X7+ X5,
X; uniforum. We find

() forldxl 0<z<1 T 0<z<1
fel) = le_11d$1 1<z<2 2—z 1<z<2

leading to
2

% 0<z<1

Fs (LE) = 2

’ {22—%—1 1<2<2
and Fg,(1.5) = 0.875.

Question b) This is a) in example 3 page 379. P(S3 < 1.5) = 0.5.

Question c) Now using the results of example 3 we get

L2 11 3 1 B 32 3]
P(S;<1.1) = —dt 243t - )dt= 4| ——+ = = =0.2213
ssin= o [ (<o Gla=ge| g5

Question d) Using the standard approximation P(z < S3 < z+dz)=fg,(z)dx
we find P(1 < S5 < 1.001)=3 - 0.001 = 0.0005.
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Solution for exercise 5.4.3 in Pitman

For a = [ we have the Gamma(2,«) distribution. We denote the waiting time in
queue ¢ by X;, and the total waiting time by Z.

Question a) The distribution of the total waiting time Z is found using the density
convolution formula page 372 for independent variables.

! —au g,—B(t—u) —pBt ' u(B—a) O[ﬁ —at —pt
ft) = an Ge du = afle Oe du:ﬁ_—a(e —e )

Question b)

E(Z) = E(X1) + E(X5) = é + %

See e.g. page 480 for the means F(X;) for the exponential variables .
Question c) Using the independence of X; and X, we have

1 1
Var(Z) = Var(X;) + Var(X,) = pei 7

The last equalit follows from e.g. page 480.
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Solution for exercise 5.4.4 in Pitman

Question a) We introduce the random variable X as the time to failure of the first
component and X, as the additional time to failure of the second component.
From the assumption X; and X, are independent and exponentially distributed
with intensity 2. The sum of two independent exponentially distributed random
variables is gamma(2,2)) distributed.

Question b) The mean of the gamma distribution is % =

1
2 =1 2X 2
202 — 222 (page 286,481).

and the variance is

Question c)
1 — e 2M09(1 4 2)tg9) = 0.9

e M09 (1 4+ 2Xtg9) = 0.1
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Solution for exercise 5.4.6 in Pitman

The argument of example 2 page 375 is easily generalized. Since X; is gamma(r;, \)
distributed we can write X; as
j=1

where W;; are independent exponential(\) variables. Thus
Sx-yyw
i=1 i=1 j=1

a sum of > 1"  r; exponential(\) random variables. The sum is gamma(} ., 7, \)
distributed.
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Solution for exercise 5.4.7 in Pitman

Question a) We apply the method used to derive the distribution of ratios
page 382. Such that

P(z<Z<z+dz):/P(x<X<x+dx,z<XY<z+dz)

T

Instead of the cone on page 382 we now have an area between the two
curves xy = z and xy = z + dz. Thus we have that the area of the
parallelogram for fixed z is approximately equal to

<z+dz z) _ dzdz

x x T

We get the density of Z by integration over x. Thus

fol) = [ 11 (. 2)

Question b) This part follows more or less directly from page 372, such that
7 = X — Y has density

fZ(Z)—/zf(:r:,a:—z)dx

Question c) Introduce W = 2Y. The density fy(w) of W is 2 fy(w) from
the linear change of variable principle; see e.g. page 333. We now apply
the general convolution result page 372 or page 386 for the variables X

and W to get
1 z2—x
fZ(z)—/fo <a:, 5 )dx
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Solution for exercise 5.4.19 in Pitman

We apply the technique of the proof for the distribution of ratios formula page
382-383. Define Z = XLJFY The event z < Z < z + dz occurs whenever Y is
between the two lines = = 2z 4+ dz and Ziﬂ = z. We get the length of the
vertical side of the rectangle by solving for y in the two equations above. Thus

1 1 1 1 xdz _xdz
=(-—1]z,pn= -1z, —Nh= ==
vz z UL z+dz ’ vz 2(z+dz) 22

X
X+Y

We have derived a general formula for the density of Z = for non negative

X and Y - )
| Sxtarsy (ﬂ> de
0 Z z

We now insert the gamma densities of X and Y (see page 481) to get

s—1
(1=2)z
<o oo, (M) e
—A\ I N> 2 z d
/o 27 1) € r(s) °© g

We simplify to get

1 l—=z e r+s—1_—-A%
z2r<r>r<s>< : ) / M) e de

the function under the integral is very close to a gamma density such that with

() r+s—1
1 1—2\"" e (—) .
r r+51/ A 7)\;d
220 (r)[(s) ( z ) (r+s)z 0 L(r+s) ¢ .

we get the density of a gamma (1“ + s, %) variable. Thus

I(r+s s—1 r4s—(s—1)—2 _ r—1 s—1
fZ(z):W(l—z) z (=D-2—-___— (1-2)

the density of a beta(r, s) random variable.

Independence

Three lines to follow

1. We see directly from the calculations

1




2. Considering

P(z<XL+Y<Z—|—dz,w<X+Y<w+dw)

X
Plz< <z4+dzlw< X+Y < 1 =
< Yoy <At dw <X w+”"> Plw<X 1Y <w+ dw)

3. Using the division rule page 425
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Solution for exercise 6.1.1 in Pitman
Question a) X is binomially distributed b (3, %)

3 3 1
PX=1)=<-PX=2)=-,P(X=3)=-
PX=1)= 2 P(X=2) =2 P(X =3)= ¢
Question b) We introduce the random variables Z, with binomial distribu-

tion b (3 -, %) We can write Y = x+Z, for the conditional distribution
of Y. For x = 0 we get

1
szmxzm:gpwzuxzngpw:mxzm:

ol W

1
7P(Y:3|X:0):§
For z = 1 we get

PY=1X=1)=

1
P =2X =1) = P(Y =3[X=1)=

=~
N =

For z = 2 we get

pw:mxzm:,PW:aX:m:%

N —

For x = 3 we get
PY=3X=3=1

Question ¢) We find P(X =z,Y =y) = P(X = 2)P(Y = y|X = z). The
distribution table is

XYy o 1 2 3
0 L 3 3 1

64 6:;1 6§1 6:;1
, o W F
2 0 0 &% %
30 0 0 3

Question d) We find the distribution of Y from the distribution table in the
previous question
9 27 27

PWzmziJﬂ%ﬂﬁhaﬂY:%:a£W:$:a

Question e) Using P(X =z|Y =y) = % we get for y =0
P(X=0Y=0)=1

1




fory=1

1 2
P(X:0|Y:1):§,P(X:1|Y:1):§
for y =2
1 4 4
P(X:0|Y:2):§,P(X:1|Y:2):§,P(X:2\Y:2):§
fory =3

4
PX=2Y =3)= 3 P(X=3]Y =8) =

O N

1
PX =0y =3)= = P(X =1y =3) =

Question f) Best guess Xy of X|Y =y

X, 01 lor2 2

Question g)

3 T 9 2 27 4 927 4 31
S PY =) P(X =X,) = Lo p e 2l 22
(' =y)k( et a3t ot e

y=0
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Solution for exercise 6.1.3 in Pitman

Question a) Assuming that the total number of families is n we can deduce
that we have i - P(T = i) - n tickets from families with ¢ children, giving
atotalof 0-0.1-n+1-02-n4+2:-04-n4+3-02-n+4-0.1-n=2n
tickets, 3 - 0.2 - n of those from families with 3 children. Using equally
likely outcomes (section 1.1) we get P(U = 3) = 0.3.

Question b) The probability in question is P(U = 3,G = 2), we find this
probability sequentially like in example 1. P(U = 3,G = 2) = P(U =

3)P(G—2U—3)—0.3-<3 )

2 80

Question ¢) P(T' = 3,G = 2) = P(T

3 -
(f-"s
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Solution for exercise 6.1.5 in Pitman
Question a) The probability in distribution in question is P(X; = x1| X1 + Xo = n).
Using the definition of conditioned probabilities

P(Xl :$1,X1—|—X2:n)
P(X1+X2:n)

P(Xl :ZE1|X1+X2:7’L) =

P(X1 :lL'l,XQ :n—xl) _ P(Xl :ZL'l)P(XQ :n—xl)
P(X1+X2=n) P(X1+X2:TL)

where we have used the independence of X; and X5 and the last equality. Now

using the Poisson probability expression and the boxed result page 226

& -1 Ay —A2

P(X) = 21 Xy + Xp = n) = 2 Tt
(X =@ Xa X =) = Ty i
n!

n! ATATT
zil(n—z)! (A + M)\ 21

) pt(1—p" ™

A1
A+ ”

with p =

Question b) Let X; denote the number of eggs laid by insect i. The probability in
question is P(X; > 90) = P(X, < 60). Now X; € binomial (150, ). With the
normal approximation to the binomial distribution page 99 to get

60+1—-150-1
P(X2§60):<I>< b 2)

—29
=& — ) = ®(—2.37) = 0.0089
V150 ( ) ( )

V150
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Solution for exercise 6.1.6 in Pitman

Question a) We recall the definition of conditional probability P(A|B) = %,
such that

N1:nl,NQ:ng,...Nm:nmﬂZ;lei:n)

“ P
P(lenl,Ng:ng,...Nm:nm|ZNi:n) ( P(Zm N_TL)
i=1 i=17"% 7

Now realising that P(Ny = ny, No =no,... Ny =n, N> " Ny =n) = P(N; =
n1, N2 = ng,... N, = ny,) and using the fact that N = > N; has Poisson
distribution with parameter A = > " \; we get

m ", /\?: e\
P(N1:nl,Ngzng,...Nm:nm|ZNi:n): )\2?11”11 \
=1 (3% na)!
such that with n=>"" n,
m ’[’L' )\1 ni )\1 ng Am Nm
PNy =11, No =g, ... Ny = 11| S Ni=n) = — (2L} (A1) (4w
(N1 = nq, Ny = ny, n |Zzl n) nllng!---nm!<)\) ()\ 3
a multinomial distribution (page 155) with probabilities p; = %

Question b) Using
P(Ny =n1,Ny =ns,... Ny = 1) = P(N = n)P(N; = ny, Ny = ny, ... Ny = n| > Ny =)
=1

we see that the N;’s are independent Poisson variables.
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We have the joint distribution (distribution table) (see e.g. exercise 3.1.4)

X\Y|1 2 3 4 5 6
1 L T T T T T
3 18 18 18 18 18
r T 1 I 1
S|y ®EFF Y
A R A
S O
6 0 0 0 0 5
We find the conditional distributions to be
Y: 11213(4]5] 6
Pl(X:6|Y: )lojojo o]l
anc
X |PY=1]1) PY=1]2) PY=13) PY =144 PY =15 P(Y =16
T : ;
— ; ; i
4 0 0 0 £ : ;
6 0 0 0 0 0 1
where we have used the short P(Y = y|z) for P(Y = y|X = z).
Such that
Y: 1 2 3 4 5 6
EXY=y) 1 5 3 % % 1
and
X EY|X =2
1 41
I
s B
3 7
TR
i
0 3
6 6
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Solution for exercise 6.2.4 in Pitman

Question a) We first derive

x

E(Y\X:x):Zy-%:%Zy .
y=1

y=1

We have the general formula (from Appendix 2 on sums page 516 (first

line of last box))
ii _n(n+1)
i=1 -2 .

This formula can be derived by induction a by a smart argument. For

even n collect in pairs (1,n), (2,n —2)..., ({,n+1—1i)... and realize

that the sum of ¢ and n + 1 — i is always n + 1 and that we have § of

such pairs. The extension for n odd is straightforward. with this result
we get

EY|X =x) = nyf ):I—gl

Now

E(Y) = E(E(Y|X)) = E <%) - —E(X Lo % (Z“) !

Ilnn+1) 1 n+3
+

T2n 2 2 4

Question b)

x

1
B?IX =) = Yy
y=1

We have the general formula

’[/ =
6

(which we can derive using E(X?) = SD(X)? 4+ E(X)? for the uniform
distribution page 477 or 487). Thus

(x+1)(2z+1)

E(YYX =z) = :




Now
n

E(Y?) = E(EY’IX =) =Y @“)éﬂ%

=1

3 6 2 2 +6

_(ln(n+1)(2n+1)+1n(n+1) n)l (n+1)4n+11)+6
n 36

Question c¢) To find SD(Y') we use the computational formula for the vari-

ance
V2 +6n—13
12

SD(Y) = VE(Y?) - (B(Y))? =
after simplifications.

Question d)

P(X+Y =2) = P(X+Y =2|X = 1)P(X = 1)+ P(X+Y =2|X £ 1)P(X £ 1)

C P(X4+Y =2 X = )P(X = 1) = =
n
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Solution for exercise 6.2.5 in Pitman
Question a) By the defition of the c.d.f. page 311
F(z)=P(X <z)=P(X <z|A)P(A) + P(X < z|A°)P(A°)

using the rule of averaged conditional probabilities page 41. Now intro-
duce the parameters of the exercise (P(X < z|A) = Fi(x) etc.) to get

F(z) =p- Fi(z) + (1 - p)Fa(z)

Question b) We first find the density of X assuming X; and X, continuous
(similar calculations can be made in full generality)
dF(x)
dx

with f;(z) = %,i =1,2. Now (see e.g. page 261 top)

=p-ile) + (1 =p)- fa(2)

E(X) —/x-f(cc)dx—/r(p-fl(sc)+(1—p)-fg(x))dm

using the linearity of the integral we get
:p/x - fi(z)dz + (1 —p) /x “folz)dz =p- E(X1)+ (1 —p) - E(Xy)

Question c¢) We first note that we can derive F(X?) in a similar way, thus
E(X?) = p-B(X?)+(1-p)- BE(X3) = p(Var(X1)+E(X1)*)+(1-p)-(Var(Xy) + E(X»)?)

where we have used the computational formula for the variance e.g. page
261. Applying this formula once more we get

Var(X) = B(X?) — E(X)?

=p-(Var(Xy)+E(X1)*)+(1-p)-(Var(Xo)+ E(X2)*) = (p- E(X1) +(1-p) B(X2))?
=p-Var(X1) + (1 —p) - Var(Xs) + p(1 — p)(E(X)) — BE(Xy))?
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Solution for exercise 6.2.18 in Pitman

By definition

Var(Y) =Y (y—EMX)*f(y) = _W—=EX))* Y f(z,9) = D> (y—EX))f(x,y)

Y Y

We now apply the crucial idea of adding 0 in the form of E(Y|z) — E(Y|x) inside the
brackets.
Var(y) = 33 (y = E(V|e) + E(Y[2) - B(Y)*f(z.y)
z oy

Next we multiply with one in the form of %

Var(Y) = Z Z(y — E(Y|z) + E(Y]x) = E(Y))’

By definition fy (y|z) =

Var(v) =3 [Z@ — B(Y|) + B(Y]z) - E(Y))2fy(y\x)] ()

T Y

Expanding the square sum we get

Var(Y)=7) [Z(y — E(Y|x))* + (E(Y]z) - E(Y))gfy(ylaﬁ)] f(z)

4 Y

since ) (y — E(Y]r)) = 0. Now

Var(Y) =)

T

@+

the inner part of the first term is Var(Y|X = z) while the inner part of the second
term is constant. Thus

Var(Y) =Y Var(Y|X =z)f(z) + Z (Y|z) — E(Y))?f(z)

> (= E(Y]2)* fy(ylz)

Y

Z (Yl]z) = ())zfy(ylﬂf)] /()

leading to the stated equation
Var(Y) = E(Var(Y|X)) + Var(E(Y|X))

an important and very useful result that is also valid for continuous and mixed distri-
butions. Mixed distributions are distributions that are neither discrete nor continuous.
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Solution for exercise 6.3.1 in Pitman

Use the boxed formula at the bottom of page 417 to get

P(A) = /0 e, (a)de = /O i %

02405 Probability
2004-4-17
BFN/bfn
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Solution for exercise 6.3.5 in Pitman

We note that Y for given X = x is uniformly distributed, on 1+ for —1 < z < 0 and
onl—xfor 0 <z < 1. Thus

Fyle) = PY <ylX =) =

—i—ﬁ<y<1—my

1 — x|

Question a) We have P (Y >

N =

X =1z)=1-F (5]z)

2

Question b) We have P (Y < |X =2) = F (|z)

2

Question c) Since Y for given X = z is uniformly distributed we can apply results
for the uniform distribution, see e.g. the distribution summary page 477 or 487.
We get

11—z

E(Y|X =) 5

Question c) Similarly
(1 — Ja])?

Var(Y|X =z) = D
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Solution for exercise 6.3.8 in Pitman
Question a) Since Y|X = z is bin(5, x) distributed we immediately have
EY|X=2)=5 2, E(Y}|X =1z) = 52(1 — x) + 252% = 52(1 + 4x)

where we have used the computational formula for the variance to get
E(Y?|X = z). Now using the boxed result page 403

DN | Ot

E(Y)=EEY]|X)) = /0 Srdr =

and (once again using page 403)

B(Y?) = B(E(Y?|X)) = /0 (5 4 2002)d =

| &

Question b)

=

PY=y,z< X <z+dz) = f(x)dzP(Y =ylz < X < z+dz) = 1-dzx ( ; ) 2Y(1—x)>7Y

Question c) To find the density we consider

PY =y,z <X <z+dz)
P =y)

Plzx<X <z+dz|lY =y) =

The probability P(Y = y) in the denominator is found by

P(Y:y)=/011-<2>xy(1—x)5ydx

Such that

Plx < X <z+dz|Y =y) = f(z|]Y =y)dz = <
o L+

> (1 — z)>¥dx
1 5
Y

)
Y

which we reckognize as a beta(y + 1,6 — y) distribution (page 478).

> 2¥(1 —z)>~vdx
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Solution for exercise 6.3.14 in Pitman

We have immediately
P(}(1 — xl,XQ =19,... ;Xn = xn) — Hle<1 . p>1*X¢ — p2?=1 Xz(l . p)n*Z?:1 X;

The posterior density of p given X1 = z1, Xo = x9,..., X,, =z, is
f(p;X1 =$1,X2=$2,~-7Xn=l‘n)
f(X1 :I‘l,XQ:LUQ,...,XnISCn)

X =2, Xy =2, X = a0p) f(p)
Jy F(X0 =21, Xs = 2a,..., X, = @0[p) f(p)dp

Inserting the previous result to get

f(p|X1 :xlaXZZwa"aXn:xn) =

pri= i1 — p) i X f (p)
Jy PEE (L = p)r X f(p)dp

which only dependes on the X;’s through their sum. Introducing S, = >, X; we
rewrite

f(p|X1 =$17X2=$2,-~7Xn=%) =

f(p|X1:l'l,XQ:I'Q,...,Xn:fEn):

We note that if the prior density of p f(p) is a beta(r, s) distribution, then the
posterior distribution is a beta(r + Sy, s +n — S,) distribution.
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Solution for exercise 6.4.1 in Pitman

Question a) From the definition of conditional proability we have P(A|B) =

%. Now from inclusion-exclusion e.g. page 22 we have P(AN B) =

}D’(A) + P(B) — P(AU B). Thus

P(ANB) P(A)+P(B)—P(AUB) 1
PAB) = P(B) P(B) —2

Question b) Since P(A)P(B) = 0.12 < 0.2 = P(A N B) we conclude that A
and B are positive depdendent (page 431).

Question c¢) Using B = (AN B) U (A°N B) we find P(A°N B) = P(B) —
P(ANB)=0.2

Question d) We find for the Bernoulli distribution which is the binomial dis-
tribution with n = 1 (e.g. page 479) ox = v/0.3- 0.7 and oy = v/0.4 - 0.6.
Further E(XY) = P({4-1p =1) = P(ANB) = 0.2. Using Cov(X,Y) =
E(XY) — E(X)E(Y) page 430 and the correlation definition page 432

we get
0.2—-0.12
Corr(X,Y) = ————— = 0.356
( ' ) 1v0.21-0.24
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Solution for exercise 6.4.2 in Pitman

From P(A) = P(A|B)P(B)+P(A|B°)P(B¢) we realize that P(A) is a weighted
average of P(A|B) and P(A|B¢), thus one and only one of

(A|B) = P(A) = P(A|B°)
(A) < P(A|B)

1. P(A|B)
2. P(A|B) <
3. P(A|B) > P(A) > P(A|B°)

P
(A|B) > P
is true.

Question a) Obvious from page 42.

Question b) We have

Cov(la,Ig) = P(ANB)—P(A)P(B) = P(A|B)P(B)—P(A)P(B) = (P(A|B)—P(A))P(B) > 0

Question c) As for ¢) interchanging the roles of B and B°.
Question d) Once again obvious from page 42.

Question e) We have (P(A|B) — P(A))P(B) > 0 since A and B are posi-
tively dependent. We dedeuce that P(A|B) > P(A) implying P(A|B) >
P(A]B?)

Question f) As for e).
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Solution for exercise 6.4.5 in Pitman
Question a) We calculate the covariance of X and Y using the definition page 630.
Cou(X,Y)=EXY)—-EX)E(Y)=EXY)

since F(X) = 0 We calculate
B(XY) = E(X?) = / >
-1

thus X and Y are uncorrelated.

1 1 1
PY>—-||X|>z)=1#P(Y >~
(5] 1-5) =12 e (5)

thus X and Y are not independent.

Question b) We have



IMM - DTU 02405 Probability
2003-11-11
BFN/bfn

Solution for exercise 6.4.6 in Pitman

X and Y are clearly not indpendent.
P(X=0Y =12)=P(X; - Xy =0/X;+X2=12) =1 # P(X;— Xy, =0) = P(X =0)
However, X and Y are uncorrelated:

Cov(X,Y)=FE(X-EX))(Y—-EY))) =EXY)-EX)E(Y)=FEXY)

= B((X) — Xo)(X) + X)) = B(X] — X3) = B(X?) — B(X3) = 0

using the definition of covariance page 630
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Solution for exercise 6.4.7 in Pitman

Question a)

Xo | X3 | Xo+ X3 | Xy — X3 | Probability
0]0 0 0 :
0|1 1 -1 g
10 1 1 3
1|1 2 0 g

Xo+ X5/ Xo—X3[-1]0]1
0 0]5]0
! s 0]s
2 0[]0

Question b) With Z, = X, — X5 we get E((Xo — X3)*) = E(Z3) = -t +1 =1

Question c) X, and X3 are independent thus uncorrelated. The new variables Z; =

X5+ X3 and Zy = Xy — X3 are correlated. F(Z,7,) = E(X3)— E(X2) = %—% =
§ 7 55 = E(Z2)E(Z,)

6 66
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Solution for exercise 6.5.1 in Pitman

Question a) We define U to be a students score on the PSAT test and V' to be
the score of the same student on the PSAT test. The pair (U, V') follows
a general bivariate normal distribution as given in the box at the bottom
of page 454. The probability in question is P(V > 1300|U = 1000) which
we rewrite

1 _12
P(V > 1300[U = 1000) = P (V 300’ U 1200 —2)

90 100

Now using the definition on page 454 together with the definition of the
standard bivariate normal distribution page 451 we get
1.2

P(0.6-X+VT —0.62Z > 0| X = —2) = P (Z > @) — 1—3(1.5) = 0.0668

Question b) The solution to this question is closely related to the method of
Example 2 page 457. First we realize that we can consider standard nor-
mal variates. Using the notation of the previous question we formulate
the problem as

P06-X+08-Z>0,X <0
PY > 01X < 0) = P(0.6:X+0.8Z > 01X < 0) = 24 i )

P(X <0)
Now using the rotational symmetry we see that P(0.6-X+0.8-Z > 0, X <

—tan—! (2 4
0) = w = 0.14758. Finally P(Y > 0|X < 0) = K8 = (0.2952.

Question c¢) We formulate the question using the notation of question a) as
P(V —=U > 50)
we get
P(1300+90-Y — (1200 4+ 100 - X') > 50)
= P(1300 + 90 - (pX + /1 — p2>Z) — (1200 + 100 - X') > 50)
50

— P(T27 — 46X > —50) =1 - & | ———2
( = —50) ( VAT + 722

) = $(0.585) = 0.72
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Solution for exercise 6.5.2 in Pitman

First we realize that we can consider standard normal variates ignoring specific
parameter values. For a bivariate standard normal distribution (X,Y’) with
correlation 0.5 we need to solve for

P(Y > X >0)

P(Y > X|X >0) = PIX > 0)

Now applying the technique of example 2 page 454 we get

P(Y>X>0)P(p-X+\/1—pQZ>X>0)P<Z>\/1%X>O>
P(X >0) P(X >0) B P(X >0)

where (X, Z) are bivariate normal and independent.The shaded area in the
figure is the proper set in thxac — z plane.

Using the rotational symmetry we find the probability to be 16800 = % or

1

3

=)
=}

20|
NIHS
=]
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Solution for exercise 6.5.4 in Pitman

Question a) We have from the boxed result page 363 that X + 2Y is normally dis-
tributed with mean p =0+ 2-0 = 0 and variance 02 =1+ 4-1 = 5. We now
evaluate

P(X+2Y <3)= P (XT/;Y < %) — (%) — B(1.34) = 0.9099

Question b) We have from the boxed result page 451

1 1
Y=2X+4/1--Z
2t 4

where X and Z are indpendent standard normal variables. Thus
X +2Y =2X +V3Z

This is the sum of two independent normal variables which itself is Normal (0, 22+
V3% distributed. Thus

P(X+2Y <3)=® (%) — ®(1.13) = 0.8708



IMM - DTU 02405 Probability
2004-5-13
BFN /bfn

Solution for exercise 6.5.6 in Pitman

Question a)
P(X > kY) = P(X — kY > 0)

From the boxed result page 363 we know that Z = X — kY is normal (0,1 + k?)
distributed, thus P(X — kY > 0) = 3.

Question b) Arguing along the same lines we find P(U > kV) = %

Question c)

PU?+V?<1)=PBX2+Y?+2V3XY + X% +3Y2 —2/3XY < 1)

0ol

= 0.118

1
:P<X2+Y2<Z):1—€—

where we have used X? + Y2 € exponential(0.5) in the last equality (page 360,
364-366, 485).

Question d)
X = v+ V3Y € normal(v,3)
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Solution for exercise 6.5.10 in Pitman

Question a) We first note from page that since V' are W are bivariate normal, then

V — v y —
oy ow
are bivariate standardized normal. From page we have that we can write

Y =pX++1-pZ

W —
X — W= kw

where X and Z are standardized independent normal variables. Thus any linear
combination of V' and W will be a linear combination of X and Z. We know
from chapter 5. that such a combination is a normal variable. After some tedious
calculations we find the actual linear combinations to be
aV + bW = apy + buw + (aoy + bpow )X + bosr/1 — p*Z
and
&V +dW = cuy + duw + (coy + dpow) X + doar/1 — p*Z
Such that (aV + bW € normal(apy + buw, a*c + b?cd, + 2abpoy oy ) and (cV +
dW € normal(cuy + duw, ot + d*od, + 2cdpoyow).
Question b) We have from question a) that
%:aV—l—bW:u1+711X+712Z W1:CV+dW:,U2+’721X—|—’}/22Z
for some appropriate constants. We can rewrite these expressions to get
Vi—in _711X+71QZ_X Wi—ps 2 X +70Z
= =X, = =
Vit vk ok Vit VYt
such that X; and Y; are standard normal variables. We see that with some effort
we would be able to write

Yi =p Xy + \/1 — 37y

and we conclude from page 454 that V; and W5 are bivariate normal variables.

Y,

Question c) We find the parameters using standard results for mean and variance
w = E(aV +bW) = apy + buw po = E(cV +dW) = cuy + buw
ot = a’oy, + b0y, + 2abpoy oy 05 = oy + d*oqy + 2edpoy oy
We find the covariance from
E((aV + bW — (apy + buw))(cV 4+ dW — (cpy + dpw)))

= B[(a(V = pv) + bW — buw))(c(V = pv) + d(W — pw))]
etc
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Solution for review exercise 1 (chapter 1) in Pitman

Define the events

B0 : 0 defective items in box
B1 : 1 defective item in box
B2 : 2 defective items in box

I : Ttem picked at random defective

The question can be stated formally(mathematically) as

P(BT) = P(I|B2)P(B2) B 1-0.03 6
~ P(I|B0)P(B0) + P(I|B1)P(B1) + P(I|B2)P(B2) 0-0.92+0.5-0.05+1-0.03 11
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Solution for review exercise 3 (chapter 1) in Pitman

The outcomes of the experimentare HHH, HHT, HTH, HI'T,' THH, THT,TTH, TTT
taking the sequence into account, assuming that these 8 outcomes are equally likely we
see that the probability that the coin lands the same way at all three tosses is i. The
flaw in the argument is the lack of independence. We use knowledge obtained from the
experiment to choose the tosses which satisfy the requirement that the coin landed the
same way at these specific tosses. It is thus less likely that the toss not chosen in the
selection procedure had the same result, as one can verify by examining the outcome

space.
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Solution for review exercise 10 (chapter 1) in Pitman
We define the events

E}, Exactly k blood types are represented
At 1 persons have blood type A
Bi 1 persons have blood type B
C'i 1 persons have blood type C'

Di 1 persons have blood type D

Question a)

P(Ey) = P(Ay) + P(By) + P(Cy) + P(Dy) = p? + p; + p? + p5 = 0.3816

Question b) We have p(k) = P(Ey). By combinatorial considerations we can show

Do Py DD

P(Aw O B O Ca N D) = =

with 41 +io+i3+1i4 = 4, in our case. We have to sum over the appropriate values
of (7:17 7:27 i37 24)

It is doable but much more cumbersome to use basic rules. We get
p(1) = 0.0687 p(2) = 0.5973 p(3) = 0.3163 p(4) = 0.0177

p(1) = P(E,) = P(Ay) + P(By) + P(Cy) + P(Dy) = p} + py + pt + pj = 0.0687
p(4) = P(E,) = P(A; N B;NCy N Dy) = 24papypepa = 0.0177

To calculate p(3) = P(E3) we use the law of averaged conditional probabilities

We immediately have



To establish P(Ej3|Ay) we argue

e+ Popa+ pe
P(Es|As) = P(BiNCy|Ag)+P(BiNDy| Ay) + P(CiN Dy | Ay) = P (1p_”ij )2p ba

further

4pppe + Pe +
P(E3|A0) — P(BgﬂC’lﬂDl|A0)+P(BlﬂC’gﬂD1|A0)+P(BlﬁC'1ﬂD2|A0) — pbp ]Ei(]j)p )11 pd

To evaluate P(E3|A;) we use the law of averaged conditional probability once
more (see Review Exercise 1.13)

P(E3|A1) = > P(E3|A; N B;)P(Bi|A)

=1

with 5 ( )
DcPd(De + Pd
P(E3|AINBY) = —m=
(E3]41 02 Bo) (1 —pa—pmp)?
P(E3|A QB)_M
' ' (1_pa_pb)2
P(E3|A; N By) = _PetPa
1_pa_pb
and we get

3 c c 1 - a ’ 2 2
P(E3|AL) = Pepa(p +pd)( p pb) o Pe + g

(1 —po —ps)? 1—p, 1 —po—pp)?
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Solution for review exercise 15 (chapter 1) in Pitman

Define the events Bi that box ¢ is chosen, and the event GG that a gold coin is found.
We have {

P(G|B1) = 1, P(G|B2) = 0, P(G|B3) = 5

We want to find P(B1|G). The probability is found using Baye’s rule (p.49)
P(G|B1)P(B1) 2

(G|B1)P(B1) + P(G|B2)P(B2) + P(G|B3)P(B3) 3

P(B1G) = -
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Solution for review exercise 13 (chapter 2) in Pitman

The probability that the manufacturer will have to replace a packet is

=L (50 2./ 50
P(replace)zZ( Z. >0.01io.9950i: _Z( . )0.01%‘0.995“

i=3 =0
0.01 0.01 49
=099 (1+—-50(1+—-—=—1]) =0.0138
( T 0.99 ( T 0.99 2))

Pitman claims this probability to be 0.0144. We evaluate the second probability using
the Normal approximation to the Binomial distribution. Let X denote the number of
packets the manufacturer has to replace. The random variable X follows a Binomial
distribution with n = 4000 and p =. We can evaluate the probability using the normal
approximation.

40 + 1 — 4000 - 0.0138
P(X>40):1—P(X§40)£1—<I>( 3 )

/4000 - 0.0138 - 0.9862

7.38

Slightly different from Pitman’s result due to the difference above.

—14.77
1-® ( ) =1— ®(—2.00) = 0.9772
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Solution for review exercise 20 (chapter 2) in Pitman

We define the events Bi that exactly ¢ bits are transmitted correctly and the event W
that a word is transmitted correctly.

Question a) We can express the event W in terms of the Bi's by W = U, . Bi.
The events Bi are mutually exclusive such that using the addition rule page 21
we get

P(W) =P (UL, ,Bi) = fj P(Bi)

% k

Now the probabilities P(Bi) are given by the Binomial distribution page 81 and
page 479, so

=n—

P = 3 (7)o

Question b)

0.01 70.01
P(W) =0.99° ((1 +8— (1 + 5009

=0. 4
0.09 )) 0.999946
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Solution for review exercise 25 (chapter 2) in Pitman

Question a) We define the events Ai that player A wins in i sets. We have immedi-
ately
P(A3) = p°

Correspondingly, player A can win in 4 sets if he wins 2 out of the first 3 and the
4’th.

P(A4)=p-p-q-p+p-q-p-p+q-p-p-p=3p’q
similary we find

P(A5) = 6p°¢?

Question b) The event A (player A wins) is A = A1 U A2 U A3. The events Ai are
mutually exclusive and we get

P(A) = P(A1U A2 U A3) = P(A1) + P(A2) + P(A3) = p*(1 + 3¢ + 6¢%)

Question c¢) The question can be reformulated as

P(A3N A) 1

(4314) P(A) 14 3q + 6¢2

using the general formula for conditional probability p.36.

Question d)

3
8

Question e) Pitman suggests no, which is reasonable. However, the way to assess
whether we can assume independence or not would be to analyze the distribution
of the number of sets played in a large number of matches.
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Solution for review exercise 2.28 (chapter 2) in
Pitman

Question a) We define the events A; that person i receives a correct let-
ter. Each person has a probability of % of receiving the correct letter.
Thus we have P(A;) = X. From the multiplication rule (boxed result
at the top of page 37) we have P(A; N A;) = P(A;)P(A;|4;). Know-
ing that at person got the right letter, we can conceptually remove this
letter from the considerations and rethink the problem with n — 1 let-
ters. Thus the conditional probability P(A;]4;) is 5. Generally we

can write P(ﬂleAz) = P(Al)P(A2|A1) s P(Ak|A1 N AQ RN A Ak—l) =
1

DG kD) — -. The event that at least one letter is correctly
a dressed is the union of all the events A;. From exclusion-inclusion we

get

P(U,A;) ZP(A =Y P(ANA)+ > PANANAL) ... (—1)" TP (N, Ay)

i<j i<j<k

i=1

Question b) The sum in question a) is close to the first n terms of the Taylor
expansion of e~!. Thus approximately for large n
n N 1
PULA)=1——

e
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Solution for review exercise 33 (chapter 2) in Pitman

Question a) Throw the coin twice, repeat if you get two heads. The event with
probability % now occurs if you got two tails, otherwise the complentary event
occurred.

Question b) Throw the coin twice, repeat until you get one head and one tail. Then
use HT or TH as the two possibilities.
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Solution for review exercise 35 (chapter 2) in Pitman

£ () () (@)
, { 38 38
=20

Question b) The standard deviation {/1000:%321=5.1 is acceptable for the Normal

Question a)

38 38
approximation.
35+ 3 — 100055 90 — 1 _ 1000
+ 3 B - [ —2—35 | = D(1.814) — &(—1.346) = 0.8764
137 1 37
100055 55 100045 2%
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Solution for review exercise 19 (chapter 3) in Pitman

Question a)

P(Y > X) ZP P(Y > X|X =x)

now X and Y are independent such that
P(Y > X) Z P(X =z)P(Y > z)

There is a convenient formula for the tail probabilities of a geometric distribution,
see eg. page 482. We need to adjust this result to the present case of a geometric
distribution with range 0, 1,... (counting only failures), such that P(Y > z) =
(1 — p)*. We now insert this result and the Poisson densities to get

PY > X) Z “_w — o Het(1=p) _ o—pp
=0 !

where we have used the exponential series ) > (“(zp))z = er1-P),

Question b)
e = ¢72 = 0.6065
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Solution for review exercise 24 (chapter 3) in
Pitman

Question a) Following the hint, we write down the permutations of {1, 2,3}

X=z Y=y Z=z [(X>Y) I(Y>2) I(Z>X)

1 2 3 0 0 1
1 3 2 0 1 1
2 1 3 1 0 1
2 3 1 0 1 0
3 1 2 1 0 0
3 2 1 1 1 0

By picking the three sequences {1,3,2},{2,1,3},{3,2,1} and assigning
equal probability (%) to each of them we get

P(X>Y) = P(X,Y,2) € {{2.1,3},{3,2,1}} = 2, P(Y > Z) = ;,P(Z > X) = §

[SVRI )

as we wanted to show.

Question b)
P(X > Y)+P(Y > Z)+P<Z > X) = E(]X>y)+E([y>Z)+E(]Z>X) = E(IX>Y+[Y>Z+IZ>X)

The sum of Ixsy + Iysz + I~z can not be greater than 2, thus the
smallest of the three probabilities P(X >Y), P(Y > Z), P(Z > X)) can
not exceed %

Question c) By a proper mixture of the preferences A for B, B for C', and C'
for A. Assume that the people in the survey are equally divided among
the three possible rankings.

Question d) We assign equal probability (%) to the permuations

{n,n—1,...,2,1}{1,n,n—1,...,3,2},....{n—1,n—2,...,1,n}
In the sequences X, Xo, ..., X,, only one of the relations X; > X, will
be violoated. (for i = n the relation is X, > Xj).

Question e)

We can achieve p = P(X > Y) = P(Y > Z) = P(Z > X) for p; = &5

=
and py = @
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Solution for review exercise 25 (chapter 3) in Pitman

Question a) The joint distribution of (Y7,Y3) is given by

Yi/Y 0 1 2
0 & 6 3
36 36 36

as a check we verify that the sum of all entries in the table is 1. We derive the
distribution of Y] + Y5

Vi+Ye=i 0 1 2 3 4
PM+Y=i) 5% 2 % %% 3
Question b)
1 1 1
E(3V1+2Y3) = B(3Y1)+E(2Y2) = 3E(Y1)+2E(Y2) = 5E(Y1) =5 (0. 5 +1- 3t2

The first equality is true due to the addition rule for expectations (page 181), the
second equality is true due to the result for linear functions of random variables
page 175 b., the third equality is true since Y; and Y5 has the same distribution,
and the fourth equality is obtained from the definition of the mean see page 181.

Question c)

0 for X <3
flx)=4¢ 1 ford <X <5
2 for X =6

or something similar.
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Solution for review exercise 29 (chapter 3) in Pitman

Question a) We note that the probability does not depend on the ordering, i.e. the
probability of a certain sequence depends on the number of 1’s among the X;’s
not on the ordering.

Hﬁab+ﬂﬂﬂﬁfﬂw+j@
120+ w+ jd)

Question b) To obtain the distribution of S,, the number of black balls drawn, we

note that there is ( Z ) different sequences each with the probability derived in

question a) that lead to the event S,, = k.

o\ TS 0+ Gd) T2 (w + jd)
k) ( k ) [0+ w+ jd)

Question c)

< K ) kéfln—i-_l];!)! N n—lm

Question d) Not independent since, but interchangeable

Question e) We approach the question by induction. We first show

We then derive P(X,,4; = 1) assuming P(X,, = 1) = bb+ w in a Polya model.
P(Xpir =1) = P(Xps1 = 1|X; = 1)P(X; = D)+P(Xps1 = 1|X; = 0)P(X; = 0) = P(Xpes = 1|X, -

To proceed we note that the probability P(X,+; = 1|X; = 1) is the probability
of P(Y, = 1) in an urn scheme starting with b + d blacks and w whites, thus
P(Xpy1 =1|X1=1)= P(Y, = 1) = 24 Correspondingly P(X,+1 = 1|X; =

, brwtd
0) = g Finally

_ bed b w b
b+ w+db+w b+w+db+w  b+w

P(Xn+1 - 1)



Question f)

P(X10 = 1|X5 = YP(X5 = 1)

P(X5=1|X;p=1) = P =)

=P(Xp=1X5=1)

using Bayes rule, or from the exchangeability. From the exchangeability we also

have
b+d

P(Xio = 11X =1) = P(X, = 1|X1 = 1) = = ——
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Solution for review exercise 34 (chapter 3) in Pitman

Question a) The function g.(x) = 2% defines a function of x for any |z| < 1. For
fixed z we can find the E(g,(X)) using the definition in the box on the top of
page 175. We find

oo

B(g.(X)) = E(=¥) = 3 #*P(X =

=0
However, this is a power series in z that is absolutely convergent for |z| < 1 and
thus defines a C* function of z for |z| < 1.

Question b) The more elegant and maybe more abstract proof is
Gxiv(z)=FE (ZX+Y) =F (zXzY)
From the independence of X and Y we get (page 177)
Gxiy(2) == E (%) E(2") = Gx(2)Gy(2)

The more crude analytic proof goes as follows

[e.9]

Gxiy(2) = E(2X) =) Z"P(X+Y =k) = izk (Z P(X=4Y=Fk— z))

k=0 k=0

again from the independence of X and Y we get

Gxyv(z Z (Z P(X =i)P(Y =k —i ) f: f: FP(X =i)P(Y = k—i)

k=0 =0 k=i

The interchange of the sums are justified since all terms are positive. The rear-
rangement is a commonly used tool in analytic derivations in probability. It is
quite instructive to draw a small diagram to verify the limits of the sums. We
now make further rearrangements

Gxay(2) =) Y FP(X =i)P(Y =k —1i)

=0 k=i

= Z FP(X =) Z HTPY =k —i) = Z dP(X =i)Y Z"P(Y =m)

by a change of variable (m = k —i). Now

Gxiy(z ZZZP =i)Y Z"P(Y =m)= ZzP = )Gy (2) = Gx(2)Gy(2)



Question c) By rearranging S,, = (X; + -+ X,,_1) + X, we deduce

Gs.(2) =[] 6x(2)

We first find the generating function of a Bernoulli distributed random vari-
able(binomial with n = 1)

E(ZX):szP(X:l‘):ZO-(l—p)—l—Zl-p:1—p(1—2’)

Now using the general result for X; with binomial distribution b(n;, p) we get
B(=%) = (BE)™ = (1 p(1L - 2)"
Generalizing this result we find
B(=) = (1 - p(1 — )™

i.e. that the sum of independent binomially distributed random variables is itself
binomially distributed provided equality of the p;’s.

Question d) The generating function of the Poisson distribution is given in exercise
3.5.19. Such that

ng(z) = H o hil=2) _ =0 pi(1-2)
i=1

The result proofs that the sum of independent Poisson random variables is itself
Poisson.

Question e)

Gx(z) = % Gs, = (%)”

ST
_ zp
Gs. = (1 L —p>)

Question f)
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Solution for review exercise 7 (chapter 4) in Pitman
Question a) We require f:oo flx)dz = ffooo ae Plldz = 1. We have o = g since
I BePrda = 1.

Question b) We immediately get E(X) = 0 since f(z) is symmetric around zero.
The second moment E(X?) is identical to the second moment of the standard
exponential, which we can find from the computational formula for the variance.

We additionally have Var(X) = F(X?) since E(X) = 0.

Var(X) = B(X?) = % + (%)2 = %

Question c)
P(|X| >y) =2P(X >y) = 2/ ge_ﬁtdt = / Be Ptdt = e
v y

the standard exponential survival function.

Question d) From the result in c¢) we are lead to

L1ehe <0
P(XS‘”):{ 05+l 0<z
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Solution for review exercise 13 (chapter 4) in Pitman

We introduce the random variables Ny, .(t) and Nj;s(f) as the number of local respec-
tively long distance calls arriving within time ¢ (where ¢ is given in minutes).

Question a)
P(Npe(1) =5, Ngis(1) = 3) = P(N}5(1) = 5) P(Ngis(1) = 3)
due to the independence of the Poisson processes. The variables N} .(f) and
Ngjs(t) has Poisson distributions (page 289) such that
3 \5

Mo " 1)? 2x 1 Agis - D? 2apa AisMoe <A —Aqs
P(N10c<1>=5,Ndis(1)=3)=%e loc -1;)—!@ dis zwe locdis

Question b) The sum of two indpendent Poisson random variables is Poisson dis-
tributed (boxed result page 226), leading to

(()‘loc —;;"dis)?)y)o ef(/\loc+)\dis)3

P(Njoe(3) + Ngjs(3) = 50) =

Question c) We now introduce the random variables Sij,. and Sig;s as the time of
the i'th local and long distance call respectively. These random variables are
Gamma distributed according to the box on the top of page 286 or to 4. page
289 The probability in question can be expressed as The waiting time to the first
long distance in terms of calls are geometrically distributed

)\1 10
P(X >10)=(1 —Pdi )10 = (¢>
5 /\loc + )‘dis
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Solution for review exercise 21 (chapter 4) in Pitman

Question a) We first note using exercise 4.3.4 page 301 and exercise 4.4.9 page 310
hat R, and Rs are both Weibull(a =2, = %) distributed. The survival function

is thus (from E4.3.4) G(z) = e 2"". We now apply the result for the minimum
of independent random variables page 317 to get

P(Y < y) = P(mln (Rl,Rz) < y) = 1—P(R1 > y,RQ > y) = 1—P(R1 > y)(RQ > y)
— e W =1 Y

a new Weibull distribution with « = 2 and A = 1. If we did not recognize the
distribution as a Weibull we would derive the survival function of the R;’s by

2

P(RZ > LL’) = / ueiéuzdu = @7%93
We find the density using (5) page 297 or directly using E4.3.4 (i)
fr(y) = 2ye™

Question b) This is a special case of E4.4.9 a). We can re-derive this result using the

change of variable formula page 304. With Z = g(Y) = Y2 we get dd—(yy) = 2y.

Inserting we get

1
fz(z) = de_?ﬁ@ =e”

an exponential(1) distribution.

Question c) We have F(Z) = 1 (see e.g. the mean of an exponential variable page
279 or the distribution summary page 477 or page 480).
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Solution for review exercise 23 (chapter 4) in Pitman

We introduce Y = M — 3 such that Y has the exponential distribution with mean 2.

Question a)
EM)=EY +3)=E(Y)+3=5 Var(M) =Var(Y +3) =Var(Y) =4

where we have used standard rules for mean and variance see eg. page 249, and
the result page 279 for the variance of the exponential distribution.

Question b) We get the density fy(m) of the random variable M is

1
Ju(m) = 56_%(7”_3) m > 3.

from the stated assumptions. We can apply the box page 304 to get

1 _ 3
ulm) _ by 3 3
Fx(x) = 51_95 N T /1’ r=e
m

where X = g(M) = ™. Alternatively

Fy(x) = P(X < 2) = P(log (X) < log () = P(log (X) — 3 < log (x) — 3)

[MIIed

—(log (#)—3) e

:P(Yglog(m)—?)):l—e#:l—ﬁ

xr>e

taking derivative we get

- dz T

fx(z)

xr>e

S N’mw
R\-

Question c) We do the calculations in terms of the random variables Y; = M; — 3,
M; = log (X;). Here X; denotes the magnitude of the i’th earthquake. From
Example 3 page 317 we know that the minimum Z of the Y;’s, Z = min (Y1, Y>)
is exponentially distributed with mean 1.

PM>4)=P(Z>1)=¢"
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Solution for review exercise 25 (chapter 4) in Pitman

Question a) We first note that the range of Y is 0 <Y <
> =2P(U <)

P(ng):P(Ugé)P<(Y<y|U<) ( ) (ng\%<U

The density is 2 for 0 < y < % 0 elsewhere
Question b) The standard uniform density f(y) =1 for 0 < y < 1, 0 elsewhere
Question c)

10 1 (1-0* 1
2 _ V) = 22 S
Var(Y) 12 18
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Solution for review exercise 26 (chapter 4) in Pitman

Question a)
EW,) =E (Xe") = E(X)E (")

by the independence of X and Y. We find F (ety) from the definition of the
mean.
3
ty z 2" (4
E(e ): ey-2dy27<e2—1>
1

Inserting this result and E(X) = 2 we get
2et /4
E(W,) = 276 <e§ - 1)
Alternatively we could derive the joint density of X and Y to

fz,y) = 2(27)%e %, 0<z,0<y<l1

where we have used that X has Gamma (4,2) density, and apply the formula for
E(g(X,Y)) page 349.

Question b) Since X and Y are independent we find E(W?)
B(W?) = B(X)E ( (™))

where F(X?) = Var(X) + (E(X))? =5, see eg. page 481. Next we derive

2t

B ()= ()

and apply the computational formula for the variance page 261

SD(W;) = \/567% (et — 1) — (QQTBt (e — 1))2 _
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Solution for review exercise 1 (chapter 5) in Pitman

First apply the definition of conditional probability page 36

P(y>1ny>Xx?)
P(Y > X2)

1
P(Y2§|Y2X2) =
The joint density of X and Y is the product of the marginal densities since X and Y

are independent (page 349). We calculate the denominator using the formula for the
probability of a set B page 349

1 1 1 9
P(YEXQ)://1-1-dyd$:/(1—x2)dx:1——:—
0 Jz2 0 3 3

and the numerator
1 1
P(Y2§HY2X2> :P(YEXQ)—P(Y<§HY2X2)
Now for the last term

1
P(Y<§HY2X2

Il
c\
S
e~
N =
—_
o,
Neg
o,
8
Il
o\
N

Finally we get
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Solution for review exercise 20 (chapter 5) in Pitman

Question a) This is example 3 page 317. A rederivation gives us

P (Tmin

<t)=1—-P(Tpip >t)=1-P(T1 > 1,1, > t)
with 77 and T3 independent we get
P(Typin <t)=1—P(T1 > t)P(Ty, > t)
now inserting the exponential survival function page 279 we get
P(Tpin <t)=1-(1—(1—e™)) (1 - (1 —e™)) =1—¢ Mt

the cumulative distribution function of an exponentially distributed random vari-
able with parameter A\; + As.

Question b) This question is Example 2 page 352. A slightly different handling of
the integrals gives us

P(Tl < Tg) = / / >\1€7A1t1)\2€7)\2t2dt2dt1
0 t1

2/ e Mgty I/ fr, () P(Ty > t1)dty
0 0

which is an application of the rule of averaged conditional probability (page 41)
for a continuous density. The general result is stated page 417 as the Integral
Conditioning Formula. We get

A1
A1+ Ao

P(T1 < T2) = / )\16—)\1t16—)\2t1dt1 =
0

Question c) Consider

P(T1>t,T2>T1) P(T1>t,T2>T1>

P(Tmin > t‘Xmin =

2) = P(Ty > t|Ty > TY) = P(T,>T) PX,. =2

min
We evaluate the probability in the denominator by integrating the joint density
over a proper region (page 349), similarly to example 2 page 352

P<T1 > t,TQ > Tl) = / / )\16_)‘1t1)\2€_/\2t2dt2dt1
t t1



0 /\1
_ Ao Mtte= A2t gy — —(A1tA2)t
/t 1€ e 1 /\1 —|— /\26

By inserting back we finally get

P(Tyiy > X 2) = e MRl — p(T0 > t)

min —
such that T};,, and X}},;,, are independent.

min = ¢ Whenever T},
and T},;, and X, ;;, are independent.

Question d) We can define X
A
>\1 ++>\n ?

= T,. Then P(X

min

=) =
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Solution for review exercise 8 (chapter 6) in Pitman
Question a) Using the multiplication rule see e.g. page 425 top we get
oyl =z
Jy) = W) fx(alY =y) =272 e
The marginal density fx(z) of X is given by
Pe(a) = [ 2eie iy
0 )

a non-standard density.

Question b) Using average conditional expectation page 425 bottom we get

B(X) = BUE(X|Y)) = B(Y) =

noting that the roles of X and Y are interchanged.

Question c) Similarly
E(XY)=E(E(XY]Y))=EYEX|Y))=EY?) =Var(Y)+ (E(Y))’ = %

We have E(X?) = E(E(X?]Y)) = E(2Y?) = 1. Thus Var(X) = SD(X)? =
1—1=2and SD(Y) = 1. Finally Corr(X,Y) = 1=




