02405 Probability 2004-4-29 BFN/bfn

Solution for exercise 6.4.2 in Pitman

From $P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$ we realize that P(A) is a weighted average of P(A|B) and $P(A|B^c)$, thus one and only one of

1.
$$P(A|B) = P(A) = P(A|B^c)$$

2.
$$P(A|B) < P(A) < P(A|B^c)$$

3.
$$P(A|B) > P(A) > P(A|B^c)$$

is true.

Question a) Obvious from page 42.

Question b) We have

$$Cov(I_A, I_B) = P(A \cap B) - P(A)P(B) = P(A|B)P(B) - P(A)P(B) = (P(A|B) - P(A))P(B) > 0$$

Question c) As for c) interchanging the roles of B and B^c .

Question d) Once again obvious from page 42.

Question e) We have (P(A|B) - P(A))P(B) > 0 since A and B are positively dependent. We dedeuce that P(A|B) > P(A) implying $P(A|B) > P(A|B^c)$

Question f) As for e).