Solution for exercise 6.2.18 in Pitman

By definition
$\operatorname{Var}(Y)=\sum_{y}(y-E(Y))^{2} f(y)=\sum_{y}(y-E(Y))^{2} \sum_{x} f(x, y)=\sum_{x} \sum_{y}(y-E(Y))^{2} f(x, y)$
We now apply the crucial idea of adding 0 in the form of $E(Y \mid x)-E(Y \mid x)$ inside the brackets.

$$
\operatorname{Var}(Y)=\sum_{x} \sum_{y}(y-E(Y \mid x)+E(Y \mid x)-E(Y))^{2} f(x, y)
$$

Next we multiply with one in the form of $\frac{f(x)}{f(x)}$

$$
\operatorname{Var}(Y)=\sum_{x} \sum_{y}(y-E(Y \mid x)+E(Y \mid x)-E(Y))^{2} \frac{f(x, y)}{f(x)} f(x)
$$

By definition $f_{Y}(y \mid x)=\frac{f(x, y)}{f(x)}$ thus

$$
\operatorname{Var}(Y)=\sum_{x}\left[\sum_{y}(y-E(Y \mid x)+E(Y \mid x)-E(Y))^{2} f_{Y}(y \mid x)\right] f(x)
$$

Expanding the square sum we get

$$
\operatorname{Var}(Y)=\sum_{x}\left[\sum_{y}(y-E(Y \mid x))^{2}+(E(Y \mid x)-E(Y))^{2} f_{Y}(y \mid x)\right] f(x)
$$

since $\sum_{y}(y-E(Y \mid x))=0$. Now
$\operatorname{Var}(Y)=\sum_{x}\left[\sum_{y}(y-E(Y \mid x))^{2} f_{Y}(y \mid x)\right] f(x)+\sum_{x}\left[\sum_{y}(E(Y \mid x)-E(Y))^{2} f_{Y}(y \mid x)\right] f(x)$
the inner part of the first term is $\operatorname{Var}(Y \mid X=x)$ while the inner part of the second term is constant. Thus

$$
\operatorname{Var}(Y)=\sum_{x} \operatorname{Var}(Y \mid X=x) f(x)+\sum_{x}(E(Y \mid x)-E(Y))^{2} f(x)
$$

leading to the stated equation

$$
\operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid X))+\operatorname{Var}(E(Y \mid X))
$$

an important and very useful result that is also valid for continuous and mixed distributions. Mixed distributions are distributions that are neither discrete nor continuous.

