Solution for exercise 6.1.5 in Pitman

Question a) The probability in distribution in question is $P\left(X_{1}=x_{1} \mid X_{1}+X_{2}=n\right)$. Using the definition of conditioned probabilities

$$
\begin{aligned}
& P\left(X_{1}=x_{1} \mid X_{1}+X_{2}=n\right)=\frac{P\left(X_{1}=x_{1}, X_{1}+X_{2}=n\right)}{P\left(X_{1}+X_{2}=n\right)} \\
= & \frac{P\left(X_{1}=x_{1}, X_{2}=n-x_{1}\right)}{P\left(X_{1}+X_{2}=n\right)}=\frac{P\left(X_{1}=x_{1}\right) P\left(X_{2}=n-x_{1}\right)}{P\left(X_{1}+X_{2}=n\right)}
\end{aligned}
$$

where we have used the independence of X_{1} and X_{2} and the last equality. Now using the Poisson probability expression and the boxed result page 226

$$
\begin{aligned}
& P\left(X_{1}=x_{1} \mid X_{1}+X_{2}=n\right)=\frac{\frac{\lambda_{1}^{x_{1}}}{x_{1}} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-x_{1}}}{\left(n-x_{1}\right)!} e^{-\lambda_{2}}}{\frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!} e^{-\left(\lambda_{1}+\lambda_{2}\right)}} \\
= & \frac{n!}{x_{1}!\left(n-x_{1}\right)!} \frac{\lambda_{1}^{x_{1} \lambda_{2}^{n-x_{1}}}\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n}=\binom{n}{x_{1}} p^{x_{1}}(1-p)^{n-x_{1}}
\end{aligned}
$$

with $p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
Question b) Let X_{i} denote the number of eggs laid by insect i. The probability in question is $P\left(X_{1} \geq 90\right)=P\left(X_{2} \leq 60\right)$. Now $X_{i} \in \operatorname{binomial}\left(150, \frac{1}{2}\right)$. With the normal approximation to the binomial distribution page 99 to get

$$
P\left(X_{2} \leq 60\right)=\Phi\left(\frac{60+\frac{1}{2}-150 \cdot \frac{1}{2}}{\frac{1}{2} \sqrt{150}}\right)=\Phi\left(\frac{-29}{\sqrt{150}}\right)=\Phi(-2.37)=0.0089
$$

