Solution for exercise 5.4.7 in Pitman

Question a) We apply the method used to derive the distribution of ratios page 382. Such that

$$P(z < Z < z + dz) = \int_{x} P(x < X < x + dx, z < XY < z + dz)$$

Instead of the cone on page 382 we now have an area between the two curves xy = z and xy = z + dz. Thus we have that the area of the parallelogram for fixed x is approximately equal to

$$dx\left(\frac{z+dz}{x} - \frac{z}{x}\right) = \frac{dxdz}{x}$$

We get the density of Z by integration over x. Thus

$$f_Z(z) = \int_x \frac{1}{x} f\left(x, \frac{z}{x}\right) dx$$

Question b) This part follows more or less directly from page 372, such that Z = X - Y has density

$$f_Z(z) = \int_x f(x, x - z) dx$$

Question c) Introduce W=2Y. The density $f_W(w)$ of W is $\frac{1}{2}f_Y(w)$ from the linear change of variable principle; see e.g. page 333. We now apply the general convolution result page 372 or page 386 for the variables X and W to get

$$f_Z(z) = \int_x \frac{1}{2} f\left(x, \frac{z-x}{2}\right) dx$$