Solution for exercise 5.4.4 in Pitman

Question a) We introduce the random variable X_{1} as the time to failure of the first component and X_{2} as the additional time to failure of the second component. From the assumption X_{1} and X_{2} are independent and exponentially distributed with intensity 2λ. The sum of two independent exponentially distributed random variables is gamma $(2,2 \lambda)$ distributed.

Question b) The mean of the gamma distribution is $\frac{2}{2 \lambda}=\frac{1}{\lambda}$ and the variance is $\frac{2}{(2 \lambda)^{2}}=\frac{1}{2 \lambda^{2}}$ (page 286,481).

Question c)

$$
\begin{gathered}
1-e^{-2 \lambda t_{0.9}}\left(1+2 \lambda t_{0.9}\right)=0.9 \\
e^{-2 \lambda t_{0.9}}\left(1+2 \lambda t_{0.9}\right)=0.1
\end{gathered}
$$

