IMM - DTU

02405 Probability
2003-11-20
BFN/bfn

Solution for exercise 5.2.8 in Pitman

Question a) We find the marginal density of Y by integrating over x (page 349)

$$
f_{Y}(y)=\int_{-y}^{y} c\left(y^{2}-x^{2}\right) e^{-y} \mathrm{~d} x=c \frac{4}{3} y^{3} e^{-y}
$$

We recognize this as a gamma density (1) page 286 with $\lambda=1$ and $r=4$ thus $c=\frac{1}{8}$

Question b) With $Z=g(Y)=4 Y^{3}, \frac{\mathrm{~d} g(y)}{\mathrm{d} y}=12 y^{2}, Y=\left(\frac{Z}{4}\right)^{\frac{1}{3}}$, using the boxed result page 304 we get

$$
f_{Z}(z)=\frac{y^{3}}{6} e^{-y} \frac{1}{12 y^{2}}=\frac{\left(\frac{z}{4}\right)^{\frac{1}{3}}}{72} e^{-\left(\frac{z}{4}\right)^{\frac{1}{3}}}
$$

Question c) We have $|X| \leq|Y|=Y$. Thus $E(|X|) \leq E(Y)=4$.

