IMM - DTU
02405 Probability 2003-11-1 BFN/bfn

Solution for exercise 5.2.15 in Pitman

Question a)

$$
\begin{gathered}
P(a<X \leq b, c<Y \leq d)=P(X \leq b, c<Y \leq d)-P(X \leq a, c<Y \leq d) \\
=P(X \leq b, Y \leq d)-P(X \leq b, Y \leq c)-(P(X \leq a, Y \leq d)-P(X \leq a, Y \leq c)) \\
=P(X \leq b, Y \leq d)-P(X \leq b, Y \leq c)-P(X \leq a, Y \leq d)+P(X \leq a, Y \leq c) \\
=F(b, d)-F(b, c)-F(a, d)+F(a, c)
\end{gathered}
$$

This relation can also be derived from geometric considerations.

Question b)

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \mathrm{d} u \mathrm{~d} v
$$

Question c)

$$
f(x, y)=\frac{d^{2} F(x, y)}{\mathrm{d} x \mathrm{~d} y}
$$

from the fundamental theorem of calculus.
Question d) The result follows from (2) page 350 by integration.

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X}(x) f_{Y}(y) \mathrm{d} y \mathrm{~d} x=\int_{-\infty}^{x} f_{X}(x) \mathrm{d} x \int_{-\infty}^{y} f_{Y}(y) \mathrm{d} y=F_{X}(x) F_{Y}(y)
$$

Alternatively define the indicator $I(x, y)$ variables such that $I(x, y)=1$ if $X \leq x$ and $Y \leq y$ and 0 otherwise. Note that $F(x, y)=P(I(x, y)=1)=E(I(x, y))$ and apply the last formula on page 349.

Question e) See also exercise 4.6 .3 c). We find

$$
\begin{gathered}
F(x, y)=P\left(U_{(1)} \leq x, U_{(n)} \leq y\right)=P\left(U_{(n)} \leq y\right)-P\left(U_{(1)}>x, U_{(n)} \leq y\right) \\
P\left(U_{(n)} \leq y\right)-P\left(x<U_{1} \leq y, x<U_{2} \leq y, \ldots, x<U_{n} \leq y\right)=y^{n}-(y-x)^{n}
\end{gathered}
$$

We find the density as

$$
\frac{d^{2} F(x, y)}{\mathrm{d} x \mathrm{~d} y}=n(n-1)(y-x)^{n-2}
$$

