IMM - DTU
02405 Probability
2003-11-22
BFN/bfn

Solution for exercise 5.2.11 in Pitman

Question a)

$$
E(X+Y)=E(X)+E(Y)=1.5
$$

from the general rule of the expectation of a sum.

Question b)

$$
E(X Y)=E(X) E(Y)=0.5
$$

by the independe of X and Y.

Question c)

$$
\begin{gathered}
E\left((X-Y)^{2}\right)=E\left(X^{2}+Y^{2}-2 X Y\right)=E\left(X^{2}\right)+E\left(Y^{2}\right)-2 E(X Y) \\
=\left(\operatorname{Var}(X)+(E(X))^{2}\right)+\left(\operatorname{Var}(Y)+(E(Y))^{2}\right)-2 E(X Y)=\frac{1}{12}+\frac{1}{4}+1+1-1=\frac{4}{3}
\end{gathered}
$$

from the general rule of the expectation of a sum, the computational formula for the variance, and the specific values for the uniform and exponential distributions.

Question d)

$$
E\left(X^{2} e^{2 Y}\right)=E\left(X^{2}\right) E\left(e^{2 Y}\right)
$$

We recall the general formula for $E(g(Y))$ from page 263 or 332

$$
E(g(Y))=\int_{y} g(y) f(y) \mathrm{d} y
$$

where $f(y)$ is the density of Y. Here Y is exponential(1) distributed with density $f(y)=1 \cdot e^{-1 \cdot y}$. We get

$$
E\left(e^{2 Y}\right)=\int_{0}^{\infty} e^{2 y} 1 \cdot e^{-y} \mathrm{~d} y=\infty
$$

thus $E\left(X^{2} e^{2 Y}\right)$ is undefined (∞).

