IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Solution for exercise 4.4.6 in Pitman

We have

$$
\tan (\Phi)=y
$$

and use the change of variable result page 304 to get

$$
\frac{\operatorname{dtan}(\Phi)}{\mathrm{d} \Phi}=1+\tan (\Phi)^{2}=1+y^{2}
$$

Now inserting into the formula page 304 we get

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}},-\infty<y<\infty
$$

The function is symmetric $\left(f_{Y}(y)=f_{Y}(-y)\right)$ since $(-y)^{2}=y^{2}$, but

$$
\int_{0}^{a} y \cdot \frac{1}{\pi} \frac{1}{1+y^{2}} \mathrm{~d} y=\frac{1}{2 \pi} \ln \left(1+a^{2}\right) \rightarrow \infty \text { for } a \rightarrow \infty
$$

The integral $\int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d} y$ has to converge absolutely for $E(Y)$ to exist, i.e. $E(Y)$ exists if and only if $E(|Y|)$ exists (e.g. page 263 bottom).

