Solution for exercise 3.5.18 in Pitman

Question a) The variable X_{1} is the sum of a thinned Poisson variable (X_{0}) and a Poisson distributed random variable (the immigration). The two contributions are independent, thus X_{1} is Poisson distributed. The same argument is true for any n and we have proved that X_{n} is Poisson distributed by induction. Ee denote the parameter of the n 'th distribution by λ_{n}. We have the following recursion:

$$
\lambda_{n}==p \lambda_{n-1}+\mu
$$

with $\lambda_{0}=\mu$ such that

$$
\lambda_{1}=(1+p) \mu
$$

and more generally

$$
\lambda_{n}=\sum_{i=0}^{n} p^{i} \mu=\mu \frac{1-p^{n+1}}{1-p}
$$

Question b) As $n \rightarrow \infty$ we get $\lambda_{n} \rightarrow \frac{\mu}{1-p}$. This value is also a fixpoint of

$$
\lambda_{n}==p \lambda_{n-1}+\mu
$$

