IMM - DTU
02405 Probability
2003-10-6
BFN/bfn

Solution for exercise 3.1.24 in Pitman

Question a) We define $P(X$ even $)=P(Y$ even $)=p$, and introduce the random variable $W=X+Y$. The probability p_{w} of the event that W is even is

$$
p_{w}=p^{2}+(1-p)(1-p)=2 p^{2}+1-2 p=(1-p)^{2}+p^{2}
$$

with minimum $\frac{1}{2}$ for $p=\frac{1}{2}$.
Question b) We introduce $p_{0}=P(X \bmod 3=0), p_{1}=P(X \bmod 3=1), p_{2}=$ $P(X \bmod 3=2)$. The probability in question is

$$
p_{0}^{3}+p_{1}^{3}+p_{2}^{3}+3 p_{0} p_{1} p_{2}
$$

which after some manipulations can be written as

$$
1-\left(p_{0} p_{1}+p_{0} p_{2}+p_{1} p_{2}-3 p_{0} p_{1} p_{2}\right)
$$

The expressions can be maximized/minimized using standard methods, I haven't found a more elegant solution than that.

