IMM - DTU
02405 Probability
2004-2-10
BFN/bfn

Solution for exercise 2.1.4 in Pitman

We denote the event that there are 3 sixes in 8 rolls by A, the event that there are 2 sixes in the first 5 rolls by B. The probability in question is $P(B \mid A)$. Using the general formula for conditional probabilities page 36

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

The probability $P(B \cap A)=P(A \mid B) P(B)$ by the multiplication rule, thus as a speical case of Bayes Rule page 49 we get

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A)}
$$

Now the probability of $P(A)$ is given by the binomial distribution page 81 , as is $P(B)$ and $P(A \mid B)$ (the latter is the probability of getting 1 six in 3 rolls). Finally

$$
P(B \mid A)=\frac{P(2 \text { sixes in } 5 \text { rolls }) P(1 \text { six in } 3 \text { rolls })}{P(3 \text { sixes in } 8 \text { rolls })}=\frac{\binom{5}{2} \frac{5^{3}}{6^{5}}\binom{3}{1} \frac{5^{2}}{6^{3}}}{\binom{5}{2} \frac{5^{5}}{6^{8}}}=\frac{\binom{5}{2}\binom{3}{1}}{\binom{8}{3}}
$$

a hypergeometric probability. The result generalizes. If we have x successes in n trials then the probability of having $y \leq x$ successes in $m \leq n$ trials is given by

$$
\frac{\binom{m}{y}\binom{n-m}{x-y}}{\binom{n}{x}}
$$

The probabilities do not depend on p.

