
02405 Probability Theory

Exam solutions E18

Technical University of Denmark - 18.11.2018

Introduction

These are the solutions to the exam set of the course "02405 Probability Theory" offered at the
Technical University of Denmark in the fall of 2018. All references in this solution manual refer to
the course text book Probability by Pitman,

Problem 1

We consider three tosses with a fair coin, i.e. there is a 50% of tails for each toss. Let X denote the
number of tails in the three tosses, then X ∼ Bin

(
3, 12
)
. The probability of getting exatcly one tails

in the three tosses is then given by

P(X = 1) =

(
3

1

)(
1

2

)(
1− 1

2

)3−1

=
3

8
.

Answer 5 is correct.

Problem 2

There are three different car categories, say 1, 2, and 3. Define then Xi as the number of claims for
cars in category i ∈ {1, 2, 3} in a given week. We then have that

X1 ∼ Pois
(

3

2

)
, X2 ∼ Pois (1) , and X3 ∼ Pois

(
5

2

)
.

Define then X = X1 + X2 + X3 as the total number of claims in a given week. Since the random
variables X1, X2, and X3 are independent, the theorem "Sum of Independent Poisson Variables are
Poisson" (p. 226) applies and yields that X ∼ Pois(µ), where µ = 3/2 + 1 + 5/2 = 5. Therefore,

P(X > 8) =

∞∑
i=9

P(X = i) =

∞∑
i=9

µi

i!
e−µ =

∞∑
i=9

5i

i!
e−5,

cf. the probability mass function for Poisson random variables.

Answer 2 is correct.
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Problem 3

Let X and Y denote the deviations from the target point measured on the first and second axes of
the coordinate system, respectively. From the problem description, we know that X and Y are inde-
pendent and identically distributed according to a standard normal distribution, i.e. X,Y ∼ N (0, 1).

The distance to the target point, say R, is evaluated as R =
√
X2 + Y 2. Consequently, R is

distributed according to a Rayleigh distribution, cf. p. 359. From the distribution summaries on p.
477, we find that

E[R] =

√
π

2
.

Alternatively, the expected value can be found using the probability density function given on p.
359:

E[R] =

∫ ∞
0

rfR(r)dr =

∫ ∞
0

r2e−
1
2 r

2

dr =

√
π

2
.

Answer 4 is correct.

Problem 4

We are given that X ∼ Exp(λ) and Y = 3
√
X. Since X is non-negative and the function g(x) = 3

√
x

is strictly increasing for x ≥ 0, the "One-to-One Change of Variable for Densities"-theorem (p. 304)
applies and yields that

fY (y) =
fX(x)

|g′(x)|
=

λe−λx∣∣ 1
3x
−2/3

∣∣ =
λe−λx

1
3x
−2/3 , x > 0,

cf. the probability density function for exponentially distributed random variables. As y = 3
√
x, it

follows that x = y3, which is inserted in the above expression:

fY (y) =
λe−λy

3

1
3 (y3)−2/3

= 3λy2e−λy
3

, y > 0.

The condition that x = y3 > 0 is equivalent with y > 0, which justifies the condition above.

Answer 4 is correct.
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Problem 5

First note that Z = 2X − Y = 2X + (−Y ). Therefore,

V[Z] = V[2X + (−Y )] = V[2X] + V[−Y ] + 2Cov(2X,−Y ),

cf. the theorem "Variance of a Sum" on p. 430. Using the linearity of the variance operator and the
bilinearity of the covariance operator (see. "Covariance is Bilinear" on p. 444), we obtain that

V[Z] = 22V[X] + (−1)2V[Y ] + (−1)(2)2Cov(X,Y ) = 4V[X] + V[Y ]− 4Cov(X,Y ).

To calculate the variances we apply the "Computational Formula for Variance" on p. 186, while the
"Alternative Formula" in the "Definition of Covariance" on p. 430 is used to calculate the covariance.
Thus,

V[Y ] = E[Y 2]− E[Y ]2 = 8− 22 = 4,

V[X] = E[X2]− E[X]2 = 10− (−3)2 = 1,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = (−4)− (−3)2 = 2.

These quantities are inserted into the calculation for the variance of Z to get that

V[Z] = 4 · 1 + 4− 4 · 2 = 0.

Answer 5 is correct.

Problem 6

Let Xi denote the lifetime of component i ∈ {1, ..., 1000} and define W =
∑1000
i=1 Xi as the total

lifetime of the system. For exponentially distributed random variables, the mean is equal to the
inverse of the rate parameter, i.e. Xi ∼ Exp(2) for i ∈ {1, ..., 1000}. Therefore, since the lifetimes
of the components can be assumed independent, we have that W ∼ Gamma(1000, 2), cf. "Poisson
Arrival Times (Gamma Distribution)" on p. 286. However, as this is not a possibility, we seek an
approximate result.

Since there is a large number of component lifetimes that are independent and identically dis-
tributed, the central limit theorem ("The Normal Approximation", p. 196) applies. Therefore,
define S1000 =

∑1000
i=1 Xi. According to the CLT, S1000 is approximately distributed according to

a normal distribution with mean E[S1000] = 1000E[Xi] = 500 and standard deviation SD(S1000) =

SD(Xi)
√

1000 =
√

1000/2 =
√

250 (as E[Xi] = SD(Xi)). Hence, S1000 ∼ N (500, 250).

Answer 2 is correct.

Page 3 of 15



02405 Probability Theory Exam solutions E18 Nisi

Problem 7

The results follows directly from an application of the "Inclusion-Exclusion" theorem on p. 22:

P(AB) = P(A) + P(B)− P(A ∪B) =
2

3
+

3

4
− 1 =

5

12
.

Answer 3 is correct.

Problem 8

The marginal distribution of Y can be found with the boxed result "Marginal Probabilities" on p.
145:

P(Y = y) =

6∑
x=1

P(X = x, Y = y).

For a given y, the number of x-values exceeding y is 6− y, while the number of x-values below y is
y − 1. Consequently, we get that

P(Y = y) =

6∑
x=1

P(X = x, Y = y) = (6− y)
1

18
+

1

36
=

13− 2y

36
,

as P(X = x, Y = y) = 1/18 for x > y and P(X = x, Y = y) = 1/36 for x = y.

Answer 5 is correct.

Problem 9

This problem can be solved in many ways, but the most straightforward method invokes the "Integral
Conditioning Formula" on p. 417. Applying the theorem yields

P(Y > X) =

∫ ∞
0

P(Y > X|X = x)fX(x)dx =

∫ ∞
0

P(Y > x)fX(x)dx =

∫ ∞
0

e−λxxe−
1
2x

2

dx,

cf. the survival function for Y ∼ Exp(λ) and the probability density function for X ∼ Rayleigh.

Answer 2 is correct.
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Problem 10

Define the random variable X as the number of heads in the 400 tosses with the perfectly fair coin.
Then X ∼ Bin

(
400, 12

)
and the exact probability is given by

P(X = 150) =

(
400

150

)(
1

2

)150(
1− 1

2

)250

=

(
400

150

)(
1

2

)400

.

However, as this answer is not an option, an approximative probability is found. We therefore apply
the "Normal Approximation to the Binomial Distribution" on p. 99, which states that

P(a ≤ X ≤ b) ≈ Φ

(
b+ 1

2 − µ
σ

)
− Φ

(
a− 1

2 − µ
σ

)
,

where µ = np and σ =
√
np(1− p). Here n and p refer to the parameters in the binomial distribution,

i.e. n = 400 and p = 1/2. Hence,

P(X = 150) = P(150 ≤ X ≤ 150) ≈ Φ

(
150 + 1

2 − 200

10

)
− Φ

(
150− 1

2 − 200

10

)
.

Answer 4 is correct.

Problem 11

Let R ∼ Rayleigh. We shall calculate the hazard rate from "Hazard from density and survival" in
the box on p. 297. The probability density function of R is given on p. 359 as

fR(r) = re−
1
2 r

2

, r > 0,

while the cumulative distribution function for R is found just below on the same page:

FR(r) = 1− e− 1
2 r

2

, r > 0.

The survival function follows directly as GR(r) = 1 − FR(r) = e−
1
2 r

2

. Hence, the hazard rate is
found as

λ(t) =
fR(t)

GR(t)
=
te−

1
2 t

2

e−
1
2 t

2
= t, t > 0.

The function λ(t) = t is strictly increasing.

Answer 1 is correct.

Page 5 of 15



02405 Probability Theory Exam solutions E18 Nisi

Problem 12

From the problem description we have that B ∼ N (µ, σ2) and E[A|B = b] = φ + κb + γb2. To find
the unconditional expectation of A, we apply the theorem "Average conditional expectation" on p.
425:

E[A] =

∫ ∞
−∞

E[A|B = b]fB(b)db =

∫ ∞
−∞

(
φ+ κb+ γb2

)
fB(b)db,

where fB is the probability density function of B. After multiplying out the brackets, we apply the
linearity of the integral to obtain:

E[A] = φ

∫ ∞
−∞

fB(b)db+ κ

∫ ∞
−∞

bfB(b)db+ γ

∫ ∞
−∞

b2fB(b)db.

Recall that integrating a probability density function over its domain yields one. Furthermore, the
expectation of a function of B can be evaluated using "Expectation of a Function" on the bottom
of p. 263 as E[g(B)] =

∫∞
−∞ g(b)fB(b)db. Thus,

E[A] = φ+ κE[B] + γE[B2].

From the definition it follows easily that E[B] = µ. The expectation of B2 is found using the
"Computational Formula for Variance" on p. 186:

V[B] = E[B2]− E[B]2 ⇔ E[B2] = V[B] + E[B]2 = σ2 + µ2.

In conclusion, we get that
E[A] = φ+ κµ+ γ(µ2 + σ2).

Answer 4 is correct.

Problem 13

As every spin on the American roulette is independent and the probability distribution over the
different colours is the same at every spin, we are in the context of repeated measurements (we repeat
an experiment multiple times under identical conditions). Therefore, every spin can be considered
a Bernoulli trial with success probability 18/(18 + 18 + 2) = 18/38 = 9/19, i.e. the probability of
hitting a red number. The waiting time until the third success, say T3, is then distributed according
to a negative binomial distribution, specifically T3 ∼ NB

(
3, 9

19

)
. The probability that the third

success occurs on the fifth spin is then given as

P(T3 = 5) =

(
4

2

)(
9

19

)3(
1− 9

19

)2

=

(
4

2

)(
9

19

)3(
10

19

)2

,

cf. the probability mass function of negatively binomially distributed random variables.

Answer 5 is correct.
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Problem 14

From the problem description we have that (X,Y ) is uniformly distributed on the discD = {(x, y)|x2+

y2 ≤ 1}, which has an area of π. Consequently, the joint probability density function of (X,Y ) is
given as

fXY (x, y) =
1

π
, (x, y) ∈ D,

and zero elsewhere. For points (x, y) ∈ D, we have that −1 ≤ x, y ≤ 1. Therefore, the condition
that y > x+ 1 implies that y > 0 and that x < 0. For such values of x and y, we get that

x2 + y2 ≤ 1⇔ 0 < y ≤
√

1− x2.

We now calculate the wanted probability by integrating over the proper limits:

P(Y > X + 1) =

∫ 0

−1

∫ √1−x2

x+1

1

π
dydx =

1

π

∫ 0

−1

(√
1− x2 − (x+ 1)

)
dx =

1

4
− 1

2π
.

Alternatively, this problem can be solved graphically by evaluating the proportion of the disc D,
which satisfies the condition that y > x+ 1.

Answer 2 is correct.

Problem 15

Let the events A, B, and C denote that the associated person is guilty. The initial estimates (prior
probabilities) that the persons are guilty given by the police are P(A) = 9/10, P(B) = 9/100, and
P(C) = 1/100. Since there is only one perpetrator, A, B, and C constitute a partition. Let DC

denote the event that the police dog selects person C. We then apply Bayes’ Rule (p. 49) to evaluate
the probability that person C is guilty given that the police dog selected person C:

P(C|HC) =
P(HC |C)P(C)

P(HC |A)P(A) + P(HC |B)P(B) + P(HC |C)P(C)

=
19
20

1
100

1
40

90
100 + 1

40
9

100 + 19
20

1
100

=
38
40

90
40 + 9

40 + 38
40

=
38

137
≈ 0.277.

Answer 5 is correct.
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Problem 16

The problem description states that V ∼ N (µV , σ
2
V ) andW ∼ N (µW , σ

2
W ) follow a bivariate normal

distribution with µV = 1, µW = 2, σV = 2, σW = 3 and correlation coefficient ρ = −1/4. Let V ∗

and W ∗ denote the standardized versions of V and W , respectively. By the boxed result on p. 454,
"Bivariate Normal Distribution", we find that

V = σV V
∗ + µV = 2V ∗ + 1 and W = σWW

∗ + µW = 3W ∗ + 2.

Furthermore, according to the theorem, (V ∗,W ∗) follows a standard bivariate normal distribution
with correlation coefficient ρ = −1/4. We now introduce the auxiliary random variable Z such that
W ∗ = ρV ∗ +

√
1− ρ2Z, where V ∗ and Z are independent standard normal random variables, cf.

the "Standard Bivariate Normal Distribution" on p. 451. Hence,

P(V −W ≤ 0) = P(2V ∗ + 1− (3W ∗ + 2) ≤ 0) = P(2V ∗ − 3W ∗ ≤ 1)

can be recast as

P(V −W ≤ 0) = P

(
2V ∗ − 3

(
−1

4
V ∗ +

√
15

16
Z

)
≤ 1

)
= P

(
11

4
V ∗ − 3

√
15

4
Z ≤ 1

)
.

As V ∗ and Z are independent standard normal variables, any linear combination of V ∗ and Z is
normally distributed, cf. "Sums of Independent Normal Variables" on p. 363. Therefore, let a second
auxiliary random variable, say X, be defined as X = (11/4)V ∗ − (3

√
15/4)Z ∼ N (µX , σ

2
X), where

µX = E[X] = E

[
11

4
V ∗ − 3

√
15

4
Z

]
=

11

4
E[V ∗]− 3

√
15

4
E[Z] = 0,

σ2
X = V[X] = V

[
11

4
V ∗ − 3

√
15

4
Z

]
=

(
11

4

)2

V[V ∗] +

(
3
√

15

4

)2

V[Z] =

(
11

4

)2

+

(
3
√

15

4

)2

= 16,

since the covariance between independent random variables is zero. Thus, X ∼ N (0, 42), which
implies that X∗ = X/4 ∼ N (0, 1). In conclusion:

P(V −W ≤ 0) = P(X ≤ 1) = P
(
X∗ ≤ 1

4

)
= Φ

(
1

4

)
.

Answer 3 is correct.
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Problem 17

To find the probability density function of Z = Y/X, we shall invoke the the result:

fZ(z) =

∫ ∞
−∞
|x|fXY (x, xz)dx

from p. 383. Before doing so, we need to establish the proper integration limits. From the problem
description we have that 0 < x < y < 1. Inserting z = y/x, we obtain that y = xz > x, which
leads to z > 1, i.e. the random variable Z is positive. Therefore, y = xz < 1 implies that x < 1/z.
Conclusively, we should integrate x over the interval [0, 1/z]. Thus,

fZ(z) =

∫ 1/z

0

|x|fXY (x, xz)dx =

∫ 1/z

0

2xdx = 2

[
1

2
x2
]1/z
0

=
1

z2
, z > 1.

Answer 2 is correct.

Problem 18

Let R denote the event that the traveller finds a suitable restaurant and let E denote the event that
the traveller can be served and enjoy a meal prior to departure. We apply the "Multiplication Rule"
on p. 37 to find the probability that the traveller finds a suitable restaurant and can be served and
enjoy a meal before departure as

P(ER) = P(E|R)P(R) =
1

2

4

5
=

4

10
=

2

5
.

Answer 3 is correct.

Problem 19

Let X1, X2, and X3 denote the growths of the different colonies, which are independent and identi-
cally distributed according to a normal distribution with mean 6 and variance 4. Furthermore, let
X = max(X1, X2, X3). According to the bottom formula on p. 316,

P(X ≤ x) = Fmax(x) = F1(x)F2(x)F3(x), x ∈ R,

where Fi refers to the cumulative distribution function for Xi, i ∈ {1, 2, 3}. The cumulative distribu-
tion function for Y ∼ N (µ, σ2) is given by FY (y) = Φ ((y − µ)/σ), cf. the distribution summary on
p. 477. Since X1, X2, and X3 are identically distributed, they have the same cumulative distribution
function, which in this case is F1(x) = F2(x) = F3(x) = Φ ((x− µ)/σ). Consequently,

P(X > 10) = 1− P(X ≤ 10) = 1− F1(10)F2(10)F3(10) = 1− Φ

(
10− 6

2

)3

= 1− Φ(2)3.

Answer 3 is correct.
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Problem 20

We note that the probability density function takes the form of a trapezoid, which implies that the
total area can be calculated as A = 1

2 (4 + 2)h, where h denotes the height of the trapezoid. Since a
probability density function integrates to 1, we can conclude that h = 1/3. The probability density
function can written as

fX(x) =


1
3 (x+ 2), −2 ≤ x < −1

1
3 , −1 ≤ x < 1

− 1
3 (x− 2), 1 ≤ x ≤ 2

.

In the first interval, the probability density is a linear function with slope 1/3 and a root in −2.
In the second interval, the probability density is constant with a value equal to the height of the
trapezoid, i.e. 1/3. Finally, in the last interval, the probability density is linear with slope −1/3

and a root in 2. The cumulative distribution function can then be found by integrating over the
probability density function. In the first interval, the cumulative distribution function becomes

FX(x) =

∫ x

−∞
fX(t)dt =

∫ x

−2

1

3
(t+ 2)dt =

1

3

∫ x+2

0

udu =
1

3

[
1

2
u2
]x+2

0

=
1

6
(x+ 2)2, −2 ≤ x < −1.

Similarly for the second interval:

FX(x) =

∫ x

−∞
fX(t)dt =

∫ −1
−2

1

3
(t+ 2)dt+

∫ x

−1

1

3
dt =

1

6
+

1

3
(x+ 1) =

2x+ 3

6
, −1 ≤ x < 1.

For the last interval, we get:

FX(x) =

∫ x

−∞
fX(t)dt =

∫ −1
−2

1

3
(t+ 2)dt+

∫ 1

−1

1

3
dt+

∫ x

1

−1

3
(t− 2)dt =

6− (x− 2)2

6
, 1 ≤ x ≤ 2.

Alternatively, we could have used a symmetry argument to derive the form of the cumulative distri-
bution function in the last interval.

Answer 1 is correct.

Problem 21

Let Wi denote the wire time for package i ∈ {1, 2, 3, 4}. According to the problem description,
Wi ∼ Exp(λ) and E[Wi] = 3/2, which implies that λ = 2/3, cf. the "Exponential Survival Function"
box on p. 279. Since the wire times are independent and exponentially distributed with same
intensity, we know that W1 +W2 +W3 +W4 ∼ Gamma(4, 2/3), cf. "Poisson Arrival Times (Gamma
Distribution)" on p. 286. We define T4 = W1 +W2 +W3 +W4 and use the "Right tail probability"
from the same box, which yields:

P(T4 ≤ 8) = 1− P(T4 > 8) = 1−
4−1∑
i=0

e−
2
3 ·8

(2/3 · 8)i

i!
= 1−

3∑
i=0

e−
16
3

(16/3)i

i!
.

Answer 2 is correct.
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Problem 22

Let U1, U2, U3, and U4 be independent and identically uniformly distributed on the interval [0, 1].
Furthermore, let X = min(U1, U2, U3, U4) and Y = max(U1, U2, U3, U4). To solve this problem, first
note that

P(Y ≤ y) = P(Y ≤ y,X ≤ x) + P(Y ≤ y,X > x) = FXY (x, y) + P(Y ≤ y,X > x),

which yields that
FXY (x, y) = P(Y ≤ y)− P(Y ≤ y,X > x).

For a random variable Z ∼ U(0, 1), the cumulative distribution function is given by FZ(z) = z in its
domain, while probabilities can be evaluated as P(a ≤ Z ≤ b) = b−a for b > a and a, b ∈ [0, 1]. Using
the cumulative distribution functions for maxima and minima of independent random variables on
p. 316-317, we get that

P(Y ≤ y) = Fmax(y) = FU1
(y)FU2

(y)FU3
(y)FU4

(y) = y4, y ∈ [0, 1].

Furhtermore, we find that

P(Y ≤ y,X > x) = P(U1 ≤ y, U2 ≤ y, U3 ≤ y, U4 ≤ y, U1 > x,U2 > x,U3 > x,U4 > x)

= P(x < U1 ≤ y, x < U2 ≤ y, x < U3 ≤ y, x < U4 ≤ y)

= P(x < U1 ≤ y)P(x < U2 ≤ y)P(x < U3 ≤ y)P(x < U4 ≤ y)

= (y − x)4, x ≤ y.

In conclusion,

FXY (x, y) = P(Y ≤ y)− P(Y ≤ y,X > x) = y4 − (y − x)4, x ≤ y ≤ 1.

Answer 4 is correct.
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Problem 23

Let X and Y denote the first and second measurement of vitamin D, respectively. We then know
that (X,Y ) follows a standard bivariate normal distribution with correlation coefficient ρ = 4/5.
First, we shall apply the "General Formula for P(A|B)" on p. 36:

P(Y < X|X < 0) =
P(Y < X,X < 0)

P(X < 0)
,

since zero is the mean of X (any standard normal random variable). Furthermore, as non-skewed
normal distributions are symmetric around their mean, we get that P(X < 0) = 1/2. To evaluate
the numerator in the above expression, we introduce the auxiliary random variable Z according
to the box on p. 451. Since (X,Y ) has a standard bivariate normal distribution, we can write
Y = ρX+

√
1− ρ2Z, where X and Z are independent and both distributed according to a standard

normal distribution. Thus,

P(Y < X|X < 0) = 2P

4

5
X +

√
1−

(
4

5

)2

Z < X,X < 0

 = 2P
(

3

5
Z <

1

5
X,X < 0

)

= 2P
(
Z <

1

3
X,X < 0

)
.

The two conditions in the latter expression describe an area in the (X,Z)-plane and the probability
we seek is equal to the proportion of that area to the entire (X,Z)-plane (We recommend that you
make a drawing of this area to visualize the solution). This proportion is equivalent to the ratio
between the angle span by the area and 2π. Hence, denote now the angle which the area span around
the origin by α. By inscribing a right triangle in the area, we see that tan(α) = 3, which implies
that α = arctan(3). The solution is therefore given as

P(Y < X|X < 0) = 2P
(
Z <

1

3
X,X < 0

)
= 2

arctan(3)

2π
=

arctan(3)

π
.

Since we do not find this solution among the possible answers immediately, we invoke the trigono-
metric identity that arctan(x) = π/2− arctan(x−1) for x > 0. Thus,

P(Y < X|X < 0) =
arctan(3)

π
=
π/2− arctan(1/3)

π
=

1

2
− arctan(1/3)

π
.

Alternatively, the solution can be found with the same methods by considering the angle spanned
between the area and the first axis in the (X,Z)-plane.

Answer 5 is correct.
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Problem 24

Let X denote the waiting time until the first toss that yields a heads (number of tosses). Since all
tosses are independent and there is an identical probability that the coin lands heads in each toss,
the tosses constitute a sequence of Bernoulli trials. As there is a 50% chance that the coin lands
heads, we conclude that X ∼ Geo(1/2). We then define the random variable Y as the number of
tosses in the game described in the problem. We know that Y is the number of tosses until the first
heads, but censored at four tosses, i.e. the coin is tossed a maximum of four times. Consequently, we
conclude that Y = min(X, 4), i.e. Y is a function of X. We then apply "Expectation of a Function
of X" from p. 175:

E[Y ] = E[min(X, 4)] =

∞∑
x=1

min(x, 4)P(X = x) = P(X = 1)+2P(X = 2)+3P(X = 3)+4

∞∑
x=4

P(X = x).

We first note that
∑∞
x=4 P(X = x) = 1 −

∑3
x=1 P(X = x) and use the probability mass function of

the geometric distribution to calculate the probabilities in the above equation. Thus,

E[Y ] =
1

2
+ 2

1

2

(
1− 1

2

)
+ 3

1

2

(
1− 1

2

)2

+ 4

(
1− 1

2
− 1

2

(
1− 1

2

)
− 1

2

(
1− 1

2

)2
)

=
1

2
+

2

4
+

3

8
+ 4

(
1− 1

2
− 1

4
− 1

8

)
=

11

8
+

4

8
=

15

8
.

Answer 1 is correct.

Problem 25

Firstly, note that the only way to get exactly 1.75 kr. with three coins is by choosing one of each
type of coin. The number of ways we can select one of each type of coin is given as(

5

1

)(
5

1

)(
5

1

)
=

(
5

1

)3

=

(
5!

(5− 1)!1!

)3

= 53 = 125.

Similarly, the number of ways we can select three coins out of the fifteen is given by(
15

3

)
=

15!

(15− 3)!3!
= 455.

If we denote the event that we select coins worth exactly 1.75 kr. by A, we can calculate the
probability of A with the "Equally likely Outcomes" formula on p. 3:

P(A) =
125

455
=

25

91
.

Alternatively, we can give some heuristic arguments for this solution. The first coin can be any of
the fifteen coins. The second coin has to be of a different type than the first, which leaves 10 out
of the 14 remaining coins. The final coin has to be of a different type than the two previous coins,
which leaves 5 out of the remaining 13. Hence, P(A) = 1 · 10/14 · 5/13 = 25/91.

Answer 1 is correct.
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Problem 26

We define the 5 independent, standard normal random variables asX1,...,X5. Recall that for standard
normal random variable, say X, the probability density function and the cumulative distribution
function are given as

fX(x) =
1√
2π
e−

1
2x

2

and FX(x) = Φ(x).

We apply the "Density of the k’th Order Statistic" on p. 326 to formulate the probability density
function of the third order statistic of X1,...,X5:

f(3)(x) = 5
1√
2π
e−

1
2x

2

(
4

2

)
Φ(x)2 (1− Φ(x))

2
= 30

1√
2π
e−

1
2x

2

Φ(x)2 (1− Φ(x))
2
.

Answer 1 is correct.

Problem 27

We can find the conditional probabilities by invoking the "General Formula for P(A|B)" on p. 36:

P(X = x|Y = 1) =
P(X = x, Y = 1)

P(Y = 1)
.

The numerator in the above expression is given in the problem, while the denominator can be
evaluated using "Marginal Probabilities" on p. 145:

P(Y = 1) =

2∑
x=0

P(X = x, Y = 1) =
3!

2!

(
1

4

)3

+3!

(
1

2

)(
1

4

)2

+
3!

2!

(
1

2

)2(
1

4

)
=

3

64
+

3

16
+

3

16
=

27

64
.

We sum from zero to two because X is a non-negative random variable and X + Y ≤ 3. We then
calculate the probabilities as follow:

P(X = 0|Y = 1) =
P(X = 0, Y = 1)

P(Y = 1)
=

3!
2!

(
1
4

) (
1
4

)2
27
64

=

(
3
64

)(
27
64

) =
3

27
=

1

9

P(X = 1|Y = 1) =
P(X = 1, Y = 1)

P(Y = 1)
=

3!
(
1
2

) (
1
4

) (
1
4

)
27
64

=

(
3
16

)(
27
64

) =
12

27
=

4

9

P(X = 2|Y = 1) =
P(X = 2, Y = 1)

P(Y = 1)
=

3!
2!

(
1
2

)2 ( 1
4

)
27
64

=

(
3
16

)(
27
64

) =
12

27
=

4

9
.

Alternatively, one can recognize that the probability mass function given in the problem descrip-
tion is equivalent with a multinomial distribution, specifically MN(3, 1/2, 1/4, 1/4). Therefore, given
Y = 1, we know that X ∼ Bin(2, 2/3), which yields the same probabilities.

Answer 1 is correct.
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Problem 28

From the problem description we know that (X,Y ) follows a standard bivariate normal distribution
with correlation coefficient ρ = 3/5. According to the "Standard Bivariate Normal Distribution"
box on p. 451, the conditional distribution of X given Y = y is a normal distribution with mean ρy
and variance 1 − ρ2, i.e. given Y = y, X ∼ N (ρy, 1 − ρ2). Thus, for Y = 1, X ∼ N (3/5, 16/25).
Hence, if we define Z ∼ N (3/5, 16/25) and denote the standardized version by Z∗, we get

P(X ≤ 1|Y = 1) = P (Z ≤ 1) = P

(
Z − 3/5√

16/25
≤ 1− 3/5√

16/25

)
= P

(
Z∗ ≤ 1

2

)
= Φ

(
1

2

)
.

Answer 3 is correct.

Problem 29

We shall apply Chebychev’s inequality (p. 191) for X − Y . Therefore, we calculate the expectation
and the standard deviation of the difference:

E[X − Y ] = E[X]− E[Y ] = 0 and V[X − Y ] = V[X] + V[Y ] = 8 + 8 = 16.

The first result follows from the fact that X and Y are identically distributed, while the second result
follows from the independence between X and Y , which implies that the covariance between X and
Y is zero. Hence, SD(X − Y ) =

√
16 = 4. Consequently,

P(|X − Y − E[X − Y ]| ≥ 20) = P(|X − Y | ≥ 20) = P(|X − Y | ≥ 5 · SD(X − Y )) ≤ 1

52
=

1

25
.

Answer 3 is correct.

Problem 30

From the problem we have that 0 < x/2 < y < 2x. Furthermore, for the probability of interest, we
have that x ≤ 1 and y ≤ 2 (We recommend that you make a drawing to visualize the solution). We
can paramterize the area of interest by: x ∈ [0, 1] and y ∈ [x/2, 2x]. Hence,

P(X ≤ 1, Y ≤ 2) =

∫ 1

0

∫ 2x

x/2

fXY (x, y)dydx =

∫ 1

0

∫ 2x

x/2

3e−(x+y)dydx = 3

∫ 1

0

e−x
∫ 2x

x/2

e−ydydx

= 3

∫ 1

0

e−x
(
e−x/2 − e2x

)
dx = 3

∫ 1

0

e−3x/2 − e−3xdx = 2− 2e−3/2 + e−3 − 1

= e−3 + 1− 2e−3/2 =
(

1− e−3/2
)2
.

Answer 4 is correct.
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