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IMM - DTU 02405 Probability

2024-20-11

Hannah Nielsen

These are suggested solutions and explanations for the December 2023 exam in the course

02405 Sandsynlighedsregning at DTU. Page references are to the book Probability by Jim

Pitman.

Problem 1

Let B denote the event that there is a beetle attack, and let M denote the event that the

coffee bean is discolored.

We can use Bayes’ Theorem (p. 49). We are given the prior probabilities of a beetle

attack and not beetle attack

P (B) = 0.001

P (B{) = 1− 0.001 = 0.999

and the likelihoods of a discoloration given a beetle attack or not beetle attack

P (M |B) = 0.8

P (M |B{) = 0.01.

We can calculate the probability of discoloring, by

P (M) = P (M |B)P (B) + P (M |B{)P (B{)

= 0.8 · 0.001 + 0.01 · 0.999.

Inserting into Bayes’ formula to find the posterior probability of a beetle attack given dis-

colored beans, we obtain:

P (B|M) =
P (M |B)P (B)

P (M)

=
0.8 · 0.001

0.8 · 0.001 + 0.01 · 0.999

= 0.074

Answer 4 is correct.

Problem 2

Let EB be the event customer buys an electric car which happens with probability pEB =

0.45, BB be the event customer buys a petrol car which happens with probability pBB = 0.15

and IB the event that no car is bought with pIB = 0.40.
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Let n be the number of customers on a day and NEB be the number customers on a day

who buys electric cars and similarly for NBB and NIB . If n = 5 and we want to find the

probability of observing exactly NEB = 2, NBB = 1, NIB = 2 the multinomial distribution

can be used(p. 155):

P (NEB = 2, NBB = 1, NIB = 2) =
5!

2!1!2!
(0, 45)2(0, 15)1(0, 40)2

=
5!

2!2!
(0.45)2(0.15)(0.40)2.

Answer 3 is correct.

Problem 3

Let X denote maximal daily wave height. Since we know the expected value E(X) = 2 and

the standard deviation of X, V ar(X) = 1← SD(X) = 1 as well as a bounding probability,

we can try using Chebychev’s Inequality (p. 191):

P [|X − E(X)| ≥ kSD(X)] ≤ 1

k2

We want to find the probability the on a given day the maximal wave height is over 6 meter,

so the dike is flooded. Note that since X ≥ 0 and E(X) = 2 it holds that X − E(X) ≥ −2

and there is no probability mass at -4 or below so taking the absolute is allowed. Hereby

the bound can be found as;

P (X ≥ 6) = P (X − E(X) ≥ 6− E(X))

= P (X − E(X) ≥ 4)

= P (|X − E(X)| ≥ 4 · 1)

= P (|X − E(X)| ≥ 4SD(X)) ≤ 1

42

=
1

16

So in total we can conclude P (X ≥ 6) ≤ 1
16 . Answer 5 is correct.

Problem 4

Let X denote stock-rate 1 and Y stock-rate 2. X and Y have standard bivariate normal

distribution with correlation ρ = 1
2 . Then, according to the ”Standard Bivariate Normal

Distribution” theorem on p. 451, we can write Y as

Y = ρX +
√

1− ρ2Z

= 1
2X +

√
3
2 Z
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where X and Z are independent standard normal variables.

We are asked to find the probability that the point (X,Y ) lies in the first quadrant

between the lines y = x
2 and y = 2x. Written as inequalities, this is equal to the event

X
2 < Y < 2X and X > 0. Substituting Y = 1

2X +
√
3
2 Z, we obtain:

P ( 1
2X < Y < 2X and X > 0) = P ( 1

2X < 1
2X +

√
3
2 Z < 2X and X > 0)

= P (Z > 0 and Z <
√

3X and X > 0).

As in Example 2 on p. 457, we can now use the rotational symmetry of the joint distribution

of X and Z. (The rotational symmetry is due to the fact that X and Z are independent

standard normal variables.)

The three inequalities correspond to the region in the 1st quadrant under the line through

origo with slope
√

3. The angle between this line and the X-axis is Arctan(
√

3) = π
3 . Due

to the rotational symmetry, the probability of landing in this region is given by this angle

divided by 2π, so we finally obtain the probability

π
3

2π
=

1

6
.

Answer 5 is correct.

Problem 5

X1 and X2 are independent with P (Xi ≤ x) = F (x), i = 1, 2 and X(1) = minXi, X(2) =

maxXi. For x ≤ y we have the joint distribution function as F ∗(x, y) = P (X(1) ≤ x,X(2) ≤
y) which we want to express in terms of F (x) and F (y). Because it is only the probability

in the cases where y ≥ both Xi’s and at least one of them must be greater or equal x so

F ∗(x, y) =P (X(1) ≤ x,X(2) ≤ y)

=P (x < X1 ≤ y,X2 ≤ x) + P (X1 ≤ y, x < X2 ≤ x) + P (X1 ≤ x,X2 ≤ x)

=(F (y)− F (x))F (x) + (F (y)− F (x))F (x) + F (x)2

=(F (y)− F (x) + F (y)− F (x) + F (x))F (x)

=(2F (y)− F (x))F (x)

=2F (y)F (x)− F (x)2 + F (y)2 − F (y)2

=F (y)2 − (F (y)− F (x))2.

Alternatively it is reached more easily by;

P (X(1) ≤ x,X(2) ≤ y) = P (X1 ≤ y,X2 ≤ y)− P (x < X1 ≤ y, x < X2 ≤ y)

= F (y)2 − (F (y)− F (x))2

Answer 1 is correct.
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Problem 6

This situation is a typical situation where it makes sense to apply a Poisson random scatter,

see page 228 and forwards. We want to determine P (Q2 ≤ 1) which is the probability of

at most finding 1 eastern Quoll in an area of 2 km2. The appearance is a Poisson process

where we are informed that Q1 ∼ Pois(λ = 3) on an area of 1 km2(p.121) and hereby via

Poisson Scatter Theorem (p. 230) we get that for an area of i km2 we have the appearance

described by Qi ∼ Pois(λi = 3i).

P (Q2 ≤ 1) = e−3·2(3 · 2)0/0! + e−3·2(3 · 2)1/1!

= e−3·2(1 + 6) = e−67

Answer 3 is correct.

Problem 7

G(x) is the survival function for X ≥ 0. G(x) = P (X > x) = 1 − (X ≤ x) = 1 − F (x). G

must be between 0 and 1 and must not increase.

Answer 2 is correct.

Problem 8

We have exponentially distributed time intervals between particle arrivals with a mean of

µi = 0.2s, giving σ = 0.2. The start time is t0 but from the memoryless property can this

be disregarded. Each interval Ti is independent of the rest. We want to find P (
∑10000
i=1 Ti <

33min) = P (
∑10000
i=1 Ti < 33 · 60s). Since there is a large number of component lifetimes

that are independent and identically distributed, the central limit theorem (”The Normal

Approximation”, p. 196) applies. So the sum S10000 ∼ N(10000 · µ, (σ
√

10000)2).

P (

10000∑
i=1

Ti < 33 · 60) =1− P (S10000 ≥ 1980)

= 1− P (
S10000 − 10000 · 0.2

0.2
√

10000
≥ 1980− 10000 · 0.2

0.2
√

10000
)

= 1− P (
S10000 − 10000 · 0.2

0.2
√

10000
≥ −1)

≈ 1− (1− Φ(−1)) from symmetry of standard normal distribution

= 1− Φ(1)

Answer 1 is correct.
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Problem 9

Let S be the event of sunshine, V the event that it’s a winter day and F the event that it

is freezing. Then we are told P (S|V ) = 0.45 and P (S, F |V ) = 0.35.

We want to determine P (S, F {|V ). Which we can find by rules of partition (p. 21).

P (S|V ) = P (S, F {|V ) + P (S, F |V )← P (S, F {|V ) = P (S|V )− P (S, F |V ) = 0.45− 0.35

Answer 5 is correct.

Problem 10

Claim: only 5% too low concentration. 20 pills are chosen at random, where 3 of the 20

pills have a too low concentration. If pl = 0.05 we need to find P (Nl ≥ 3), where Nl is the

number of pills with too low concentration out of nl = 20, use the binomial distribution (p.

81):

P (Nl ≥ 3) =

20∑
i=3

(
20

i

)
pil(1− pl)20−i

=

20∑
i=3

(
20

i

)
0, 05i(0, 95)20−i

Answer 4 is correct.

Problem 11

An area is limited by y = 3, y = 0, y = 3
2 (x+ 3), y = − 3

2 (x− 3). The first coordinates to the

point is denoted by the stochastic variable X. We are asked to find P (X ≥ 1). Firstly the

boundaries of the right triangle, which is described by the line y = − 3
2 (x− 3), is found

3 = −3

2
(x− 3) => x = −2 + 3 = 1

0 = −3

2
(x− 3) => x = 3

Therefore the triangle starts in x = 1 and ends in 3. So we can determine the bottom of the

triangle to be 2 wide and from symmetry we must get the density normalization constant c
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as

1

2
= P (0 ≤ X ≤ 3)

= P (0 ≤ X ≤ 1) + P (1 ≤ X ≤ 3)

= (1 · 3 +
1

2
(2 · 3))c

= 3c+ 3c = 6c

=> c = 1/12

Now to find P (X ≥ 1) we now know that this is the area of the right triangle normalized

with c i.e.

P (X ≥ 1) =
c

2
(2 · 3) =

3

12
=

1

4
.

Answer 2 is correct.

Problem 12

So since the calls come randomly with a mean of λ calls pr. minute, we can assume that calls

come as a Poisson arrival process and as described in the box on p. 284 the time between

arrivals/calls then follow an exponential distribution with rate λ. Answer 5 is correct.

Problem 13

Given f(x, y) = 6(x − y), X = max(Ui), Y = min(Ui), i = 1, 2, 3 and Ui ∼ Unif(0, 1),

where Ui independent. We are asked to determine E(Y |X = x). Ref p. 423 on ”Conditional

Expectations” and p. 349 on ”Joint Distribution Defined by a Density” and

E(Y |X = x) = E(min(Ui)|max(Ui) = x)

=

∫ x

0

yfY |X(y|X = x)dy

=

∫ x

0

yf(y, x)/fX(x)dy

=

∫ x

0

y6(x− y)/fX(x)dy

=
6

fX(x)

∫ x

0

y(x− y)dy

=
6

fX(x)

[
xy2/2− y3/3

]x
0

=
6

fX(x)
(xx2/2− x3/3− (x02/2− 03/3))

=
3x3 − 2x3

fX(x)
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We can determine the marginal distribution as

fX(x) =

∫ x

0

f(x, y)dy =

∫ x

0

6(x− y)dy

= 6
[
xy − y2/2

]1
0

= 6x2 − 3x2

= 3x2

Lets insert the expression found for fX(x) to get the mean of Y given X.

E(Y |X = x) =
x3

fX(x)
=

x3

3x2
=
x

3

Answer 2 is correct.

Problem 14

X: fx(x) = 2x for x ∈ [0; 1] Y = X2: fY (y) y must also lie in [0;1] We are in a situation

with a change of variable, given by Y = X2. This function is one-to-one, so we can use the

formula on page 304:

fY (y) =
fX(x)∣∣∣ dydx ∣∣∣ .

We obtain the denominator ∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣d(x2)

dx

∣∣∣∣ = |2x| = 2x.

We notice that 2x will cancel out the 2x in the numerator, so there is no need to express it

in terms of y.

Inserting, we obtain:

fY (y) =
fX(x)∣∣∣ dydx ∣∣∣ =

2x

2x
= 1.

Answer 3 is correct.

Problem 15

The situation described is exactly a Geometric distribution with p = 1/20 (p. 482) and

T = 3. Therefor the probability of the success occurs in exactly the 3. try is

P (T = 3) = (1− p)3−1p = (19/20)21/20 = 192/203.

Answer 5 is correct.
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Problem 16

Let O be the event of an overrun water-plant, W the event of a powerful rainfall, and J is

a random day in July. We are the given the following probabilities;

P (W |J) =
1

9

P (W {|J) = 1− 1

9
=

8

9

P (O|W ) =
1

4

P (O|W {) ≈ 0

Then by ”Rule of Average Conditional Probabilities” on p. 396 we get

P (O|J) = P (O|W,J)P (W |J) + P (O|W {, J)P (W {|J) =
1

36

Answer 3 is correct.

Problem 17

Given the joint density function:

f(x, y) =
6

7

(
x2 +

xy

2

)
, 0 < x < 1, 0 < y < 2

We need to find P (Y > 1
2 | X < 1

2 ). To do this we need to find the conditional density

function fY |X(y|x), which is f(x, y)/fX(x) by Multiplication Rule (p. 151). So firstly we

need to find the marginal of X by
∫
y
f(x, y)dy (p. 349);

fX(x) =

∫ 2

0

6

7

(
x2 +

xy

2

)
dy

=
6

7

[
x2y +

xy2

4

]2
0

=
6

7

(
2x2 + x

)
.

With the marginal we can now find the conditional density function to

fY |X(y|x) =
f(x, y)

fX(x)

=
6
7

(
x2 + xy

2

)
6
7 (2x2 + x)

=
x2 + xy

2

2x2 + x
.
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The conditional probability P (Y > 1
2 |X < 1

2 ) can now be found be integrating y from 1/2

to 2 and x from 0 to 1/2.

P (Y >
1

2
| X <

1

2
) =

∫ 1/2

0

∫ 2

1/2

x2 + xy
2

2x2 + x
dydx

=

∫ 1/2

0

∫ 2

1/2

x2 + xy
2

2x2 + x
dy dx

=

∫ 1/2

0

(

∫ 2

1/2

x2

2x2 + x
dy +

∫ 2

1/2

xy
2

2x2 + x
dy)dx

=

∫ 1/2

0

(
3x2

2(2x2 + x)
+

15x

16(2x2 + x)

)
dx

Using a computational tool to evaluate the final integral, we get:

P (Y >
1

2
| X <

1

2
) ≈ 0.8625

Answer 2 is correct.

Problem 18

Inner bull in radius interval [0;0.25] outer bull with radius in the interval [0.25,1.25/2]. The

coordinates hit (X,Y ) are two independent normal distributed stochastic variables with

mean 0 and variance 1. We have to find the probability of hitting the outer bull. To do this

we can use the Rayleigh distribution (p. 358-359). So the probability must be

P (0.25 < r < 1.25/2) = F (1.25/2)− F (0.25)

= 1− e− 1
2 (0.625)

2

− (1− e 1
2 (0.25)

2

)

= e
1

2·16 − e− 1
2

25
64

= e
1
32 − e− 25

128 .

Answer 1 is correct.

Problem 19

For a joint density function f(x, y) = 2 for 0 < x < y < 1 and 0 else we want to find the

covariance. We want to use the alternative formula on p.430. Therefore, we first need to
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find both marginal distributions and their means;

fX(x) =

∫ 1

x

2dy = 2(1− x)

E(X) =

∫ 1

0

x(2− 2x)dx = 12 − 2

3
13 =

1

3

fY (y) =

∫ y

0

2dx = 2y

E(Y ) =

∫ 1

0

2y2dy =
2

3
(1− 02) =

2

3
.

Then we also need the joint mean;

E(XY ) =

∫ 1

0

∫ y

0

xyf(x, y)dxd =

∫ 1

0

∫ y

0

xy2dxdy =

∫ 1

0

2y(
1

2
y2)dy =

1

4

Now the covariance can be computed from the formula.

Cov(X,Y ) = E(XY )− E(X)E(Y ) =
1

4
− 1

3

2

3
=

9− 8

36
=

1

36
.

Answer 3 is correct.

Problem 20

The probability that N of the 1000 go to the one theater can be described with a binomial

distribution with p = 1
2 ;

P (arrivalsinonebio = N) =

(
1000

N

)
1

2

N 1

2

1000−N
=

(
1000

N

)
1

2

1000

This can then aalso be extended to get the probability that the number of arrivals is above

N and some arrivals are rejected;

0.01 < P (refuse entrance)

= P (arrivals in one bio > N)

= 1− P (arrivals in one bio ≤ N)

= (
1

2
)1000

N∑
i=0

(
1000

i

)
.
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We might also consider using the ”Normal Approximation to the Binomial Distribution” on

p. 99 since the exponent is so big. In this case, we would get;

0.01 < P (refuse entrance)

= P (arrivals in one bio > N)

= 1− P (arrivals in one bio ≤ N)

≈ 1− (Φ(
N + 1

2 − 1000 1
2√

1000 1
2
1
2

)− Φ(
0− 1

2 − 1000 1
2√

1000 1
2
1
2

))

= 1− (Φ(
1
2 (2N − 999)
√

250
)− Φ(

− 1
2 (1001)
√

250
))

≈ 1− (Φ(
N − 499.5√

250
)− 0).

Answer 2 is correct.

Problem 21

We have that X ∼ Bin(6, 12 ) and Y = |X − 3| Since X ∈ [0; 6] when X < 3, then X − 3 < 0

and they will be mirrored. When X = 6 then Y = 3. So Y can take the values 0, 1, 2, 3;

P (Y = 0) = P (X = 3) =

(
6

3

)
1

2

6

=
20

64
=

5

16

P (Y = 1) = P (X = 2) + P (X = 4) =

(
6

2

)
1

2

6

+

(
6

2

)
1

2

6

= 2
15

64
=

15

32

P (Y = 2) = P (X = 1) + P (X = 5) =

(
6

1

)
1

2

6

+

(
6

5

)
1

2

6

= 2
6

64
=

3

16

P (Y = 3) = P (X = 0) + P (X = 6) =

(
6

0

)
1

2

6

+

(
6

6

)
1

2

6

= 2
1

64
=

1

32

Answer 3 is correct.

Problem 22

X1 + X2 + X3 = 20, P (X1 = x1, X2 = x2, X3 = x3) = 20!
x1!x2!x3!

( 1
2 )x1( 1

5 )x2( 3
10 )x3 It is

observed that X1 = 10 Find P (X2 = x2, X3 = x3|X1 = 10) P (X2 = x2, X3 = x3|X1 =

10) = P (X1 = 10, X2 = x2, X3 = x3)/P (X1 = 10) Lets observe that stochastic variable

(X1, X2, X3) follows a multinomial distribution (p. 155) and we know that the marginal of

a multinomial is a binomial (exercise 3.1.12) with for X1 the parameters n1 = 20 p1 = 1
2

k1 = 10 giving

P (X1 = 10) =

(
20

10

)
1

2

20
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P (X2 = x2, X3 = x3|X1 = 10) =
P (X1 = 10, X2 = x2, X3 = x3)

P (X1 = 10)

=
20!

10!x2!x3!
( 1
2 )10( 1

5 )x2( 3
10 )x3

20!
10!10!

1
2

20

=
1

x2!x3!
( 1
5 )x2( 3

10 )x3

1
10!

1
2

10

=
10!

x2!x3!
1

5x2
( 3
10 )x3

2−10

=

(
10

x2!

)
2x2+x3

5x2
(

3

10
)x3

=

(
10

x2!

)
(
2

5
)x2(

2 · 3
10

)x3

=

(
10

x2!

)
(
2

5
)x2(

3

5
)x3

Answer 4 is correct.

Problem 23

X ∼ Unif(1, 3) and Y ∼ Unif(2, 4) the densities of X and Y can be found as on p. 264

fX(x) =
1

3− 1
=

1

2
if 1 ≤ x ≤ 3 else 0

fY (y) =
1

4− 2
=

1

2
if 2 < y < 4 else 0.

From independence, we have that the joint is the product of the marginals

f(x, y) = fX(x)fY (y) =
1

2

1

2
=

1

4
,

if 1 ≤ x ≤ 3 and 2 < y < 4 else f(x, y) = 0 Answer 1 is correct.
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Problem 24

Let R be a stochastic variable which follows a Rayleigh distribution. To find the median

use the c.d.f. of the Rayleigh on p. 359 and the median is found by r = F−1( 1
2 ) (p.319),

1

2
= FR(r) = 1− e− 1

2 r
2

=>
1

2
= e−

1
2 r

2

=> ln
1

2
= −1

2
r2

=>− 2 ln
1

2
= r2

=>
√
−2 ln 1 + 2 ln 2 = r

=>r =
√

2 ln 2.

Answer 1 is correct.

Problem 25

The random variable Z is defined as the ratio of Y and X, that is, Z = Y
Z . In this situation,

we can use formula (f) on top of page 383:

fZ(z) =

∫ ∞
−∞
|x|f(x, zx) dx.

This formula looks simple, but we have to be quite careful. The tricky thing is to figure out

when the joint density f(x, zx) evaluates to what.

A good way to think about this is to consider z fixed. Then we can phrase the question

as ”what values of x give what joint density?”. And in the case where the joint density is

constant (on some region), we can ask ”which values of x cause us to be in the region where

the density is non-zero?”. When we know this, we also know the limits of integration that

we should use.

In this problem, we have a uniform distribution on a trapeze of area 3
2 . Hence, the joint

density is 2
3 whenever we are within this trapeze (since they multiply to 1).

So now we can phrase the question like this: ”Which values of x cause the point (x, zx)

to be within the trapeze?”
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x

y

2x+ y = 3

x+ 2y = 3

The points (x, zx) lie on a line through origo with slope z. So in our case, we have to

find those x where this line is inside the trapeze. By visual inspection it can be seen that

we have two intersecting lines one when z ≤ 1 and one when z ≤ 1. First we consider

the case where z ≤ 1. So we find the intersection between the line y = zx and the line

2x+ y = 3 => y = 3− 2x:

zx = 3− 2x

x =
3

2 + z

So, for a fixed 1 ≥ z ≥ 0, whenever x is between 0 and 3
2+z , the joint density f(x, zx) is 2/3.

(Note that we can assume z = y/x non-negative because X and Y are distributed only on

non-negative values.)

Using this, we can evaluate the integral:

fZ(z) =

∫ ∞
−∞
|x|f(x, zx) dx

=

∫ ∞
−∞
|x| · 2

3
· I[0≤x≤ 3

2+z ]
dx

=

∫ 3
2+z

0

2

3
x dx

=
1

3
x2
∣∣∣x= 3

2+z

x=0

=
3

3(2 + z)2

=
1

(2 + z)2
.

Now we consider the case where z ≥ 1. So we find the intersection between the line

y = zx and the line x+ 2y = 3 => y = 3−x
2 :

zx =
3− x

2

x =
3

2z + 1
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So, for a fixed z ≥ 1, whenever x is between 0 and 3
2z+1 , the joint density f(x, zx) is 2/3.

Using this, we can evaluate the integral:

fZ(z) =

∫ ∞
−∞
|x|f(x, zx) dx

=

∫ ∞
−∞
|x| · 2

3
· I[0≤x≤ 3

2z+1 ]
dx

=

∫ 3
2z+1

0

2

3
x dx

=
1

3
x2
∣∣∣x= 3

2z+1

x=0

=
3

3(2z + 1)2

=
1

(2z + 1)2
.

Answer 4 is correct.

Problem 26

We have 3 independent and identically distributed variables, so we can use the theorem

”Density of the kth Order Statistic” on p. 326.

Then the c.d.f. and density of the Rayleigh distributions of wind speeds are

F (x) = 1− e− 1
2x

2

x > 0

f(x) = xe−
1
2x

2

x > 0.

We are looking for the density g(x) of the second smallest of the 3 variables, which translates

to k = 2 and n = 3. Inserting all this in the formula from the theorem, we find that

g(x) = nf(x)

(
n− 1

k − 1

)
(F (x))k−1(1− F (x))n−k

= 3 · xe− 1
2x

2

·
(

3− 1

2− 1

)
(1− e− 1

2x
2

)2−1(1− (1− e− 1
2x

2

))3−2

= 6xe−
1
2x

2

(1− e− 1
2x

2

)e−
1
2x

2

= 6xe−x
2

− 6xe−
3
2x

2

which applies whenever x > 0. Answer 4 is correct.

Problem 27

Let the pair (X,Y ) be bivariate normal distributed with E(X) = 0, E(Y ) = µY , V ar(X) =

σ2
X , V ar(Y ) = σ2

Y and Cov(X,Y ) = ρσXσY P (y1 ≤ Y ≤ y2|X = x)

15 of 18



November 15, 2024

Define U = (X −E(X))/σX = X/σX and V = (Y −E(Y ))/σY = (Y − µY )/σY so that

U, V have a standard bivariate normal distribution with correlation ρ (p. 454).

Now we can define V = ρU +
√

1− ρ2W where U and W are two independent standard

normal variables

P (y1 ≤ Y ≤ y2|X = x) =P (
y1 − µY
σY

≤ V ≤ y2 − µY
σY

|U = x/σX)

= P (
y1 − µY
σY

≤ ρU +
√

1− ρ2W ≤ y2 − µY
σY

|U = x/σX)

= P (

y1−µY

σY
− ρx

σX√
1− ρ2

≤W ≤
y2−µY

σY
− ρx

σX√
1− ρ2

)

= Φ(

y2−µY

σY
− ρx

σX√
1− ρ2

)− Φ(

y1−µY

σY
− ρx

σX√
1− ρ2

)

= Φ(
y2 − µY − ρxσY

σX

σY
√

1− ρ2
)− Φ(

y1 − µY − ρxσY

σX

σY
√

1− ρ2
)

Answer 4 is correct.

Problem 28

Let X be a stochastic variable which follows a beta(2, 1) and Y be one which given X = x

follows a binomial(4, x). We are asked to find P (Y = 3) Then by ”Integral Conditioning

Formula” on p. 417 we get

P (Y = 3) =

∫
x

P (Y = 3|X = x)fX(x)dx =

∫ 1

0

(
4

3

)
x3(1− x)4−3 · (2 + 1− 1)!

(2− 1)!(1− 1)!
x2−1(1− x)1−1dx

= 2

(
4

3

)
[
1

5
x5 − 1

6
x6]10

= 8(
1

5
− 1

6
)

=
8

30

=
4

15

Answer 1 is correct.

Problem 29

We are given 4 independent which all can be described by F (X) = 1 − exp−(x− a)b for

x ≥ a We need to determine the survival of 2a for the minimum i.e. 1 − Fmin(2a) we can

use the results on p. 319. We are looking for the c.d.f. Fmin(x) of the minimum of the 4
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variables. Inserting all this in the formula, we find that

Fmin(x) = 1− (1− F (x))4

= 1− (1− 1 + exp−(x− a)b)4

= 1− (exp−(x− a)b)4

Now we can determine the probability that the public institution must pay at least 2a,

P (Xmin ≥ 2a) = 1− Fmin(2a)

= 1− (1− (exp−(2a− a)b)4)

= exp−ab4

= exp−4ab.

Answer 2 is correct.

Problem 30

We are given that the number of X (20 foot containers) and Y (40 foot containers) have

bivariate normal distribution with

X ∼ normal(1000, 1002)

Y ∼ normal(500, 502)

ρ =
−4

5
.

We are asked to find P (33X + 66Y > 69000).

Overall, the strategy to solve this exercise follows 3 main steps:

- Rewrite into 2 standard normal variables.

- Rewrite into 2 independent standard normal variables.

- Rewrite into 1 normal variable.

We first rewrite X and Y using standardized normal variables X∗ and Y ∗, cf. box on p.

454:

X = µX + σXX
∗ = 1000 + 100X∗

Y = µY + σY Y
∗ = 500 + 50Y ∗

The standard normal variables X∗ and Y ∗ have the same correlation ρ = −4
5 as the normal

variables X and Y , according to the box on p. 454.
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Using this rewrite, we have

P (33X + 66Y > 69000) = P (33000 + 3300X∗ + 33000 + 3300Y ∗ > 69000)

= P (3300(X∗ + Y ∗) > 3000)

= P (X∗ + Y ∗ >
10

11
).

Since X∗ and Y ∗ are standardized bivariate normal variables, we can rewrite Y ∗ using the

formula on p. 451, with X∗ and Z∗ being independent standard normal variables:

Y ∗ = ρX∗ +
√

1− ρ2Z∗

=
−4

5
·X∗ +

√
1−

(
−4

5

)2

· Z∗

=
−4

5
X∗ +

3

5
Z∗.

Inserting this expression, we obtain

P (33X + 66Y > 69000) = P (X∗ + Y ∗ >
10

11
)

= P (X∗ +
−4

5
X∗ +

3

5
Z∗ >

10

11
)

= P (X∗ + 3Z∗ >
50

11
).

Now, since X∗ and Z∗ are independent standard normal variables, a linear combination

V = X∗ + 3Z∗ is a normal variable with mean zero and standard deviation given by

σ2
V = 12 · 12 + 32 · 12 = 10.

This is according to the formula given on p. 460 (which builds on the result for the variance

of a scaling on p. 188 and the theorem about sums of independent normal variables on p.

363).

We can standardize V into V ∗ by dividing with its SD of
√

10. Doing this, we finally

obtain:

P (33X + 66Y > 69000) = P (X∗ + 3Z∗ >
50

11
)

= P (V >
50

11
)

= P (V ∗ > 50
11
√
10

)

= 1− Φ( 5
√
10

11 )

= Φ(− 5
√
10

11 ).

Answer 1 is correct.
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