Solution for exercise 4.1.12 in Pitman

Question a) First we determine the total area of the figure, which is 8. The area of the triangle with x-coordinate less than or equal to x_{0} is $\frac{1}{2}(x+2) \cdot 2(x+2)=(x+2)^{2}$ for $x \leq 0$ and $8-\frac{1}{2}(2-x) 2(2-x)=4+4 x-x^{2}$ for $0<x \leq 2$. We find

$$
f(x)=\left\{\begin{array}{cc}
\frac{x+2}{4} & -2 \leq x \leq 0 \\
\frac{2-x}{4} & 0<x \leq 2
\end{array}\right.
$$

Question b) We can write the density as

$$
f(x)=\left\{\begin{array}{cc}
c(2+x) & -2 \leq x<0 \\
2 c(1-x) & 0 \leq x \leq 1
\end{array}\right.
$$

From integration (or by considering the area of the figure) we find $c=\frac{1}{3}$.
Question c) The four lines defining the square are: $y=2 x-3, y=2-\frac{1}{2} x, y=2 x+2$ and $y=-\frac{1}{2} x-\frac{1}{2}$. The area of the square is 5 . Now considering $P(x<X<x+\mathrm{d} x)$ for $-1<x<0$. The triangle defined by the vertical line through $x, y=2 x+2$ and $y=-\frac{1}{2} x-\frac{1}{2}$ has area $\frac{1}{2} x\left(2 x+2--\frac{1}{2} x-\frac{1}{2}=\frac{1}{4}(x+1)^{2}\right.$. We find the area of the triangle defined by the vertical line through $x+\mathrm{d} x, y=2 x+2$ and $y=-\frac{1}{2} x-\frac{1}{2}$ to $\frac{1}{4}(x+\mathrm{d} x+1)^{2}$ and derive $f(x) \mathrm{d} x=\frac{1}{2}(x+1)$. By using similar arguments for the intervals $(0,1)$ and $(1,2)$ we get

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2}(1+x) & -1 \leq x<0 \\
\frac{1}{2} & 0 \leq x<1 \\
\frac{1}{2}(2-x) & 1 \leq x \leq 2
\end{array}\right.
$$

