IMM - DTU
02405 Probability
2004-2-10
BFN/bfn

Solution for exercise 1.5.9 in Pitman

Denote the event that a shape of type i is picked by T_{i}, the event that it lands flat by F and the event that the number rolled is six by S. We have $P\left(T_{i}\right)=\frac{1}{3}, i=1,2,3$, $P\left(F \mid T_{1}\right)=\frac{1}{3}, P\left(F \mid T_{2}\right)=\frac{1}{2}$, and $P\left(F \mid T_{3}\right)=\frac{2}{3} P(S \mid F)=\frac{1}{2}$, and $P\left(S \mid F^{c}\right)=0$.

Question a) We first note that the six events $T_{i} \cap F$ and $T_{i} \cap F^{c}(i=1,2,3)$ is a partition of the outcome space. Now using The Rule of Averaged Conditional Probabilities (The Law of Total Probability) page 41

$$
P(S)=P\left(S \mid T_{1} \cap F\right) P\left(T_{1} \cap F\right)+P\left(S \mid T_{2} \cap F\right) P\left(T_{2} \cap F\right)+P\left(S \mid T_{3} \cap F\right) P\left(T_{3} \cap F\right)+P\left(S \mid T_{1} \cap F^{c}\right) P\left(T_{1} \cap F^{c}\right)+
$$

The last three terms are zero. We apply The Multiplication Rule for the probabilities $P\left(T_{i} \cap F\right)$ leading to

$$
P(S)=P\left(S \mid T_{1} \cap F\right) P\left(F \mid T_{1}\right) P\left(T_{1}\right)+P\left(S \mid T_{2} \cap F\right) P\left(F \mid T_{2}\right) P\left(T_{2}\right)+P\left(S \mid T_{3} \cap F\right) P\left(F \mid T_{3}\right) P\left(T_{3}\right)
$$

a special case of The Multiplication Rule for n Events page 56. Inserting numbers

$$
P(S)=\frac{1}{2} \frac{1}{3} \frac{1}{3}+\frac{1}{2} \frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{2}{3} \frac{1}{3}=\frac{1}{4}
$$

Question b) The probability in question is $P\left(T_{1} \mid S\right)$. Applying Bayes' rule page 49

$$
P\left(T_{1} \mid S\right)=\frac{P\left(S \mid T_{1}\right) P\left(T_{1}\right)}{P(S)}=\frac{\frac{1}{6} \frac{1}{3}}{\frac{1}{4}}=\frac{2}{9}
$$

