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Solution for exercise 6.2.4 in Pitman

Question a) We first derive
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We have the general formula (from Appendix 2 on sums page 516 (first

line of last box))
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This formula can be derived by induction a by a smart argument. For

even n collect in pairs (1,n), (2,n —2)..., ({,n+1—1i)... and realize

that the sum of ¢ and n + 1 — i is always n + 1 and that we have § of

such pairs. The extension for n odd is straightforward. with this result
we get
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Now
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Question b)
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We have the general formula
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(which we can derive using E(X?) = SD(X)? 4+ E(X)? for the uniform
distribution page 477 or 487). Thus
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Question c¢) To find SD(Y') we use the computational formula for the vari-

ance
V2 +6n—13
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SD(Y) = VE(Y?) - (B(Y))? =
after simplifications.

Question d)

P(X+Y =2) = P(X+Y =2|X = 1)P(X = 1)+ P(X+Y =2|X £ 1)P(X £ 1)

C P(X4+Y =2 X = )P(X = 1) = =
n




