Solution for exercise 6.2.4 in Pitman

Question a) We first derive

$$E(Y|X=x) = \sum_{y=1}^{x} y \cdot \frac{1}{x} = \frac{1}{x} \sum_{y=1}^{x} y$$
.

We have the general formula (from Appendix 2 on sums page 516 (first line of last box))

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} .$$

This formula can be derived by induction a by a smart argument. For even n collect in pairs $(1,n), (2,n-2)\dots, (i,n+1-i)\dots$ and realize that the sum of i and n+1-i is always n+1 and that we have $\frac{n}{2}$ of such pairs. The extension for n odd is straightforward. with this result we get

$$E(Y|X=x) = \frac{1}{x} \sum_{x=1}^{x} y = \frac{1}{x} \frac{x(x+1)}{2} = \frac{x+1}{2}$$
.

Now

$$E(Y) = E(E(Y|X)) = E\left(\frac{X+1}{2}\right) = \frac{1}{2}E(X) + \frac{1}{2} = \frac{1}{2}\left(\sum_{x=1}^{n} x \frac{1}{n}\right) + \frac{1}{2}$$
$$= \frac{1}{2}\frac{1}{n}\frac{n(n+1)}{2} + \frac{1}{2} = \frac{n+3}{4}$$

Question b)

$$E(Y^2|X=x) = \sum_{y=1}^{x} y^2 \frac{1}{x}$$

We have the general formula

$$\sum_{i=1}^{m} i^2 = \frac{n(n+1)(2n+1)}{6}$$

(which we can derive using $E(X^2) = SD(X)^2 + E(X)^2$ for the uniform distribution page 477 or 487). Thus

$$E(Y^2|X=x) = \frac{(x+1)(2x+1)}{6}$$

Now

$$E(Y^2) = E(E(Y^2|X=x)) = \sum_{x=1}^n \frac{(x+1)(2x+1)}{6} \frac{1}{n}$$
$$= \left(\frac{1}{3} \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \frac{n(n+1)}{2} + \frac{n}{6}\right) \frac{1}{n} = \frac{(n+1)(4n+11) + 6}{36}$$

Question c) To find SD(Y) we use the computational formula for the variance

$$SD(Y) = \sqrt{E(Y^2) - (E(Y))^2} = \frac{\sqrt{7n^2 + 6n - 13}}{12}$$

after simplifications.

Question d)

$$P(X+Y=2) = P(X+Y=2|X=1)P(X=1) + P(X+Y=2|X\neq 1)P(X\neq 1)$$
$$= P(X+Y=2|X=1)P(X=1) = \frac{1}{n}$$