=
—
e

i

Model-based Software Engineering
(02341, spring 2016)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
e

i

Meta-modelling and

Domain Specific Languages (DSLs) and
Outlook

DTU Compute
Department of Applied Mathematics and

s=aquter Science

=
—]
=

DSL(s) e

M

= DSL (singular):
A single domain specific language,
designed and realised according to some principles
and for a specific purpose or a specific domain

= DSLs (plural):
= Disipline and principles for designing and realising a DSL

= A technology or set of technolgies for designing and
realising a DSL (mostly from MBSE)

= A way of "thinking” software design (idioms)

MBSE (02341 f16), L12 3

Parts of a DSL definition |5

M

= Abstract syntax (see LO1):
language concepts and their relation
(API / domain model / framework)

= Concrete syntax (see LO1):
syntactical representation of concepts
(graphical or textual)

= Semantics (what it does):
Code generation or interpretation, which enacts
what an instance of the DSL says DSLTechno\g‘oerf

MBSE (02341 f16), L12

=
—
=

G M F ‘ DTU Compute
Department of Applied Mathematics and Computer ¢

M

PetriNet
Transition t
Object
Place 4
I |
_2} sour
Arc Node |2 Arc
N
1 target
Token #

Transition Place |‘— Token

generate an _
. :Petrinet
editor
[~ :Transitior {wrce :Arc targ/e‘t :Place [
/ \target sourc[\
— :Arc :Arc]
\/SOUI‘CG I targe!
:Token — :Place & :Arc =S Transitiorf=

MBSE (02341 f16), L12 5

Philosophy

‘ DTU Compute

M

= A DSLs should help decrease redundancy and
unnecessary work

= A DSL should help separating the variable or
generic parts of a software product from parts
which do not change

= A DSL should increase reuse

= A DSL should support abstraction form irrelevant
technical detaills

= A DSL should emphasize the domain’s idioms

MBSE (02341 f16), L12 6

‘ DTU Compute

M

MBSE & DSLs

= MBSE Technologies help implementing DSLs

In a fast and efficient way (mostly concerning abstract
and concrete syntax)

= Therefore, the terms MBSE and DSL are often used
In the same context (and sometimes mixed up)

MBSE (02341 f16), L12

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

Meta-modelling (and MOF)

"Meta-modelling is a
core part of DSL
design: Defining the

MBSE (02341 f16), L12

 abstract syntax

\

_J

Class Diagrams are mode

Arc

PetriNet
?
Object
4 _% sour .
Node %
9 1 target

Transition Place |‘— Token

UML model

MBSE (02341 f16), L12

ClassDiagram
*e
X X
1 start
Class | Association
1 end

Meta-model for UML

(class diagra

.

Now, the term “meta”
model makes sense!

~N

o

Meta-levels

PetriNet

Jepartme

‘ DTU Compute ’

:Token

MBSE (02341 f16), L12

Transition Place k Token
:Petrinet
urce target
| :Transition {0 :Arc § :Place
/\target sourcl\
— :Arc :Arc
W source targe
rget sougge -
— :Place (m :Arc :Transition

D)

ied M

=
—
=

:.Class

em mo L 2
! o
>
|
ClassDiagram
*
| _Jk start
Class > Association
}end
mE RN
Association
& 2 Class
Association
| I I |

| evels of models

N

IS an
PetriNet

instance of y

‘ DTU Compute

Object
> ? |
. sour
Node p= Arc
concrete syntax & e
reprs. for Transition Place k Token
:Petrinet
| :Transition {Durce JArc tar"fi :Place
/\target sourc!\
— :Arc Arc
W source targe
:Token — :Place (wrget :Arc =S :Transition

MBSE (02341 f16), L12

=
—
=

M

|
ClassDiagram |
*

Class

| _Jk start
P
} end

Association

Association

:.Class

Association

11

Outset e

M2

Unified Modelling Notation

A A

M1

|
Model

A

MO

User data

1

= conforms to / is instance of

MBSE (02341 f16), L12

=
—]
=

M

ClassDiagram

)

| _J start
P
} end

Class Association

'

A

Node Arc
1 target

N
AN ITransitior" Place k— Token I
N
o
\\

-

12

=
—
=

Meta Object Facility (MOF) | =
“meta—meta—mode\ h
MOF notation , meta-modelling
A A notation
| <
modelling notation , modell Lnonog
A notation d
| <
M1
Model . design-time
T J
MO \
User data - run-time

T = conforms to / is instance of

MBSE (02341 f16), L12

Beware a myth: Though “suggested”
by the first versions of MOF and
related standards, the number of
levels is NOT fixed!

LThere can be any number of levels!
13

. .y DTU Compute DTU

- 1)
M3 MOF notation
\ / A 'L’\
M2 Any modelling notation
A
|
M1 Model
A
|
MO User data
_ J

[Thi ion is based on.
This presentation is
Meta Object Facility (MOF) Core

T = conforms to / is instance of Specifi cation, Version 2.0, OMG

Uormal/OG—O’l -01),
14

MBSE (02341 f16), L12

=
—
=

Discussion: meta | B s

M

= EMOF as instance of itself

= \Where are the different features of the EMOF model
represented in EMOF

MBSE (02341 f16), L12 15

EMOF Types

TypedElement

DTU Compute DTU
Department of Applied Mathematics and Computer Scienc z
Ekkart Kindler >
Element
7 /1
\
ownedComment | 0..*
A4
dElement
omment

body: String

MBSE (02341 f16), L12

16

EMOF Classes | e prs

MultiplicityElement |
isOrdered: Boolean = false
Type TypedE/ement isUnique: Boolean = true
lower: Integer = 1
/\ A upper: UnlimitedNatural = 1
Class
Property

_ 'v class dAttib
IsAbstraciBoolea ®' ownedattribute isReadOnly: Boolean = false
default: String [0..1]
X
0..1 ({ordered}) 0.. isComposite: Boolean = false | 0..1

isDerived: Boolean = false

isID: Boolean opposite
0..*
superClass
class Operation
ownedOperation
" To be continued on
0..1 tordered} 0..* next slides!

MBSE (02341 f16), L12 17

EMOF Classes (cntd.) |5

=
—
=

M

Additional constraints (e.g.):

= Qopposite properties are properly paired
= no cycles in inheritance structure

= an object can be contained in at most one container

MBSE (02341 f16), L12

18

EMOF Classes (cntd.)

‘ DTP Compgt? E;I-E
TypedElement || MultiplicityElement TypedElement || MultiplicityElement
_ operation ownedParameter
Operation -2 Parameter
{ordered} O0..*
N Type
0.* raisedException

MBSE (02341 f16), L12

19

EMOF Data Types

Type

JAN

Datalype

JAY

JAN

Primitivelype

Enumeration

MBSE (02341 f16), L12

DTU Compute

=
—
=

M

NamedElement
JAN
enumeration
ownedLiteral Enumeration

0.1 {ordered} 0..* Literal

20

=
—
=

EMOF Primitive Types |5 | 22
= Boolean

= String

" |nteger

= UnlimitedNatural (* for "infinity”)

MBSE (02341 16), L12 21

EMOF Packages

DTU Compute
)epartment of Applied M

=
—
=

M

NamedElement

Package
package

uri: String ‘ ownedType
0..1 0..*
nestingPackage
0..1
0..*
nestedPackage

MBSE (02341 f16), L12

Type

22

R fI t- k Bz{gjmcl(l)wtgmlge{ Applied Mathematics and Computer Science E-'I-‘U’
e e C I O n p aC a'g e Ekkart Kindler z
Object
Type
4 isInstance(o:Object):Boolean
Element
getMetaClass():Class
container():Element
equals(el:Object):Boolean PaCkage
get(prop:Property):Object
set(prop:Property,val:Object) N
isSet(prop:Property):Boolean 1 | package
unset(prop:Property)

NamedElement Factory
createFromString(d:DataType,s:String):Object

convertToString(d:DataType,0:0bject):String
create(mc:Class):Element

For properties with more than one value, there exist ReflexiveCollection and
ReflexiveSequence (similar to Java Collections)!

MBSE (02341 f16), L12 23

MOF In our project

DTU Compute

Department of Applied Mathematics and Computer Science
MultiplicityElement
\sOn_ﬂere?: Boolean = false

Ekkart Kindler

| o

—— Type | TYDEAEIEMEN! (o - iUniaue: Boolean = true
Zﬁ Zr upper: L
Class
clas:

M3

Ecore (~ EMOF)
)

isAbstract: Boolean = false

S
ownedAttribute

0..1 f{ordered} O..

M2

ePNK and
YAWL

Annotation
+ model (runtime

Ise
eal Ise
I 0..1]

meta models simulator) —

M1 YAWL model
k\\ e
YAWL case =
MO (Instance of a -
simulation) I e —

T = conforms to / is instance of

MBSE (02341 f16), L12 24

MOF In our project

=
—
=

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

M

M3 Ecore (~ EMOF)
| .
ePNK and Annotation
M2 YAWL + model (runtime
imulat
meta models simulator) /f Technically the
runtime model
M1 YAWL model instances jump one
Ly conceptual level
\ /
\
YAWL ca
MO (instance of a ~ Not a technical (Java
simulation) / O0) instance; just a
— conceptual instance
T = conforms to / is instance of of YAWL
/
MBSE (02341 16), L12 25

=
—]
=

M

of wrong models

MBSE [B e

Feel the consequences J

In addition to models and automatic code generation,
MBSE provides technigues for structuring/extending
(big) software (framework behind the scenes).

= Factories

= |nterfaces

= Listeners / observers

= Commands

= Handlers

= Extension points

MBSE (02341 f16), L12

26

MBSE: Not covered s

M

= Customizing code generation

= Defining own code generators
(defining model to text transformations M2T)

= Transforminga model into another model
(class diagram to database scheme, M2M)

= Other MBSE technologies (e.g. Microsofts Entity
Framework)

= Techniques for developping embedded DSLs

MBSE (02341 f16), L12 27

=
—
=

Tomorrow | B e

M

= Guest lecture by Rasmus Petersen from
Netcompany:

How does Netcompany use models

MBSE (02341 f16), L12 28

