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= DSL (singular):
A single domain specific language,
designed and realised according to some principles
and for a specific purpose or a specific domain

= DSLs (plural):
= Disipline and principles for designing and realising a DSL

= A technology or set of technolgies for designing and
realising a DSL (mostly from MBSE)

= A way of "thinking” software design (idioms)
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Parts of a DSL definition |5

M

= Abstract syntax (see LO1):
language concepts and their relation
(API / domain model / framework)

= Concrete syntax (see LO1):
syntactical representation of concepts
(graphical or textual)

= Semantics (what it does):
Code generation or interpretation, which enacts
what an instance of the DSL says DSLTechno\g‘oerf
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Philosophy
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= A DSLs should help decrease redundancy and
unnecessary work

= A DSL should help separating the variable or
generic parts of a software product from parts
which do not change

= A DSL should increase reuse

= A DSL should support abstraction form irrelevant
technical detaills

= A DSL should emphasize the domain’s idioms

MBSE (02341 f16), L12 6
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MBSE & DSLs

= MBSE Technologies help implementing DSLs

In a fast and efficient way (mostly concerning abstract
and concrete syntax)

= Therefore, the terms MBSE and DSL are often used
In the same context (and sometimes mixed up)

MBSE (02341 f16), L12
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Meta-modelling (and MOF)

"Meta-modelling is a
core part of DSL
design: Defining the
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Class Diagrams are mode
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Meta-levels
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| evels of models
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Unified Modelling Notation
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= conforms to / is instance of
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Meta Object Facility (MOF) | =
“meta—meta—mode\ h
MOF notation , meta-modelling
A A notation
| <
modelling notation ,  modell Lnonog
A notation d
| <
M1
Model . design-time
T J
MO \
User data - run-time

T = conforms to / is instance of
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Beware a myth: Though “suggested”
by the first versions of MOF and
related standards, the number of
levels is NOT fixed!

LThere can be any number of levels!
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- 1)
M3 MOF notation
\ / A 'L’\
M2 Any modelling notation
A
|
M1 Model
A
|
MO User data
\_ J

[ Thi ion is based on.
This presentation is
Meta Object Facility (MOF) Core

T = conforms to / is instance of Specifi cation, Version 2.0, OMG

Uormal/OG—O’l -01 ),
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= EMOF as instance of itself

= \Where are the different features of the EMOF model
represented in EMOF

MBSE (02341 f16), L12 15



EMOF Types

TypedElement
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EMOF Classes | e prs

MultiplicityElement |
isOrdered: Boolean = false
Type TypedE/ement isUnique: Boolean = true
lower: Integer = 1
/\ A upper: UnlimitedNatural = 1
Class
Property

_ 'v class dAttib
IsAbstraciBoolea ®' ownedattribute isReadOnly: Boolean = false
default: String [0..1]
X
0..1 ({ordered}) 0.. isComposite: Boolean = false | 0..1

isDerived: Boolean = false

isID: Boolean opposite
0..*
superClass
class Operation
ownedOperation
" To be continued on
0..1 tordered} 0..* next slides!

MBSE (02341 f16), L12 17



EMOF Classes (cntd.) |5
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Additional constraints (e.g.):

= Qopposite properties are properly paired
= no cycles in inheritance structure

= an object can be contained in at most one container

MBSE (02341 f16), L12
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EMOF Classes (cntd.)

‘ DTP Compgt? E;I-E
TypedElement || MultiplicityElement TypedElement || MultiplicityElement
_ operation ownedParameter
Operation -2 Parameter
{ordered} O0..*
N Type
0.* raisedException

MBSE (02341 f16), L12
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EMOF Data Types

Type

JAN

Datalype

JAY

JAN

Primitivelype

Enumeration
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NamedElement
JAN
enumeration
ownedLiteral Enumeration

0.1 {ordered} 0..* Literal

20



=
—
=

EMOF Primitive Types |5 | 22
= Boolean

= String

" |nteger

= UnlimitedNatural (* for "infinity”)

MBSE (02341 16), L12 21



EMOF Packages
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NamedElement

Package
package

uri: String ‘ ownedType
0..1 0..*
nestingPackage
0..1
0..*
nestedPackage
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Object
Type
4 isInstance(o:Object):Boolean
Element
getMetaClass():Class
container():Element
equals(el:Object):Boolean PaCkage
get(prop:Property):Object
set(prop:Property,val:Object) N
isSet(prop:Property):Boolean 1 | package
unset(prop:Property)

NamedElement Factory
createFromString(d:DataType,s:String):Object

convertToString(d:DataType,0:0bject):String
create(mc:Class):Element

For properties with more than one value, there exist ReflexiveCollection and
ReflexiveSequence (similar to Java Collections)!
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MOF In our project
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MultiplicityElement
\sOn_ﬂere?: Boolean = false
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| o

—— Type | TYDEAEIEMEN! (o - iUniaue: Boolean = true
Zﬁ Zr upper: L
Class
clas:

M3

Ecore (~ EMOF)
)

isAbstract: Boolean = false

S
ownedAttribute

0..1 f{ordered} O..

M2

ePNK and
YAWL

Annotation
+ model (runtime

Ise
eal Ise
I 0..1]

meta models  simulator) —

M1 YAWL model
k\\ e
YAWL case =
MO (Instance of a -
simulation) I e —

T = conforms to / is instance of
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MOF In our project
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M3 Ecore (~ EMOF)
| .
ePNK and Annotation
M2 YAWL + model (runtime
imulat
meta models simulator) /f Technically the
runtime model
M1 YAWL model instances jump one
Ly conceptual level
\ /
\
YAWL ca
MO (instance of a ~ Not a technical (Java
simulation) / O0) instance; just a
— conceptual instance
T = conforms to / is instance of of YAWL
/
MBSE (02341 16), L12 25
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of wrong models

MBSE [ B e

Feel the consequences J

In addition to models and automatic code generation,
MBSE provides technigues for structuring/extending
(big) software (framework behind the scenes).

= Factories

= |nterfaces

= Listeners / observers

= Commands

= Handlers

= Extension points

MBSE (02341 f16), L12
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MBSE: Not covered s

M

= Customizing code generation

= Defining own code generators
(defining model to text transformations M2T)

= Transforminga model into another model
(class diagram to database scheme, M2M)

= Other MBSE technologies (e.g. Microsofts Entity
Framework)

= Techniques for developping embedded DSLs

MBSE (02341 f16), L12 27
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= Guest lecture by Rasmus Petersen from
Netcompany:

How does Netcompany use models

MBSE (02341 f16), L12 28



