=
—
e

i

Model-based Software Engineering
(02341, spring 2016)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
e

i

Meta-modelling and
Domain Specific Languages (DSLS)

DTU Compute
Department of Applied Mathematics and Computer Science

.

fleran)=Y G5 800 __{z 71 82818284

‘;".2

7
X

DTU Compute DTU

I d e a fo r S O m e S Oftware Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

/

y
AN
— 4
-
P Il & Resource - APetriNetEditorin15MinutesExamples/simple. petrinets_diagram - Eclipse SDK
—
\J/

File Edit Diagram Mavigate Search Project Run Window Help
' £3- LNEL A% A8 L - 5| Dresoree |
§|Tah0ma vlg v| B I A~ &~ g =~ & -&h - ol - ?-a, AT g = I A B P - %SVNReposito...
[7 Project Explarer 53 = O || [d] simple.petrinets_diagram &3 =0
3
= <}==D ~ Palette
- - - % Select
[=-1=F APetriMetEditorIniSMinutesExamples & =
|=| simple.petrinets 4 £0om
@ simple. petrinets_diagram =3 Hote T
I=F SE2-ExamplePraject [integration/test /tru t1 <4 Arc
T=F SE2-Test <4 Transition
<4 Place
< Token
o
B ——— | t2
£ I > Z Tasks | Bl cansale | & Properties 232 |E| :«=::> =]
Oz) = [=B .
o= Outline &3 B |§E| = B|| ¢ Transition t2
Core Property Value
Marne o= g2
Appearance
R

MBSE (02341 f16), L11

Example of a Petri net

MBSE (02341 f16), L11

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—
e

M

=
—
=

DTU Compute
"-‘.‘jm'\'\ﬂ\ﬂ)f \ plied Mathematics 1 Computer Science

M

Stages

= Examples

= Taxonomy

* Glossary

= Domain model

MBSE (02341 f16), L11 5

DTU Compute DTU
Models (Meta Models) i =
PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))
or
Obiect (self.source.oclIsKindOf(Transition)
J and
A self.target.oclIsKindOf(Place))
/1 source
Node | Arc
A 1 target

Transition Place 9—— Token

Meta model for Petri nets

MBSE (02341 f16), L11

Syntax (abstract and concrete)

graphical /
concrete
syntax

‘Token

‘ DTU Compute

=
—]
=

M

MBSE (02341 f16), L11

:Petrinet
source target
:Transition [€<— :Arc —>1 :Place
target source 0
abstract syntax
(as an UML object
:Arc diagram) :Arc
source
J/ target |,
target source
:Place < :Arc >{ :Transition

Overview

meta model

IS an
instance of

model

MBSE (02341 f16), L11

build-time

runtime

=
—
=

DTU Compute
epartment ot plied | >
: L=
>
| |
PetriNet
t"
Object
|
_2 sour
Node |2 Arc
<<
9 1 targe
Transition Place |‘— Token
:Petrinet |
urce target
| :Transitio {O :Arc g} :Place [
/\target sourcA
— :Arc :Arc m
\/SOUI‘CE I targe&
rget sougge .
:Token —{ :Place {a :Arc ‘5 :Transitiorf—=
8

=
—
=

:Token

MBSE (02341 f16), L11

DTU Compute
Department of A en o
: =T
>
PetriNet
t
Object
I]
_24 sour
Node |2 Arc
<
9 1 targe
Transition Place |‘— Token
:Petrinet |
urce target
[~ :Transitior {O :Arc g} :Place [
/ \target sourc[\
— :Arc :Arc —
\/ source targe
rget sougge
— :Place & :Arc Transitiorf=
9

=
—
=

Meta modelling | B s s

M

= Next, we will do for class diagrams what we did for
Petri nets before

= Model for class diagrams - meta model

MBSE (02341 f16), L11 10

Class Diagrams are mode

Arc

PetriNet
?
Object
4 _% sour .
Node %
9 1 target

Transition Place |‘— Token

UML model

MBSE (02341 f16), L11

ClassDiagram
*®
X X
1 start
Class | Association
1 end

Meta-model for UML

(class diagra

.

Now, the term “meta”

model makes sense!

~N

/

Il

tment of Applied Mathematic:

Meta-levels

‘ DTU Compute

=
=

M

|
ClassDiagram |
E3

| _Jk start
Class > Association
PetriNet Tend
Association
:.Class & 2 :
Association
Transition Place k Token
:Petrinet |-
urce target
| :Transition {0 :Arc § :Place [
/ \target sourcl \
— :Arc Arc —
\/ source I targel
rget sougge .
:Token — :Place (m :Arc :Transition [~

MBSE (02341 f16), L11

| evels of models

N

IS an
PetriNet

instance of y

‘ DTU Compute

Object
> ? 1
2. sour
Node p= Arc
concrete syntax & e
reprs. for Transition Place k Token
:Petrinet
| :Transition {Durce JArc tar"fi :Place
/ \target sourc! \
— :Arc Arc
W source targe
:Token — :Place (wrget :Arc =S :Transition

MBSE (02341 f16), L11

=
—
=

M

|
ClassDiagram |
E3

Class

| _Jk start
P
} end

Association

Association

:.Class

Association

13

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

Meta-modelling (and MOF)

"Meta-modelling is a
core part of DSL
design: Defining the

MBSE (02341 f16), L11

 abstract syntax

\

_J

14

DTU Compute ‘ DTU
Y -
o

1. Background / Motivation |

- !

i nd “rosy”
Mid / end 90ties: A bit coarse a y

: . . history!
= CASE (Computer Aided Software Engineering) COOK at y

modelling tools become more popular
= code generation and round-trip-engineering
= "UML-like” notations (and others "Booch”, "OMG")
= many dialects, variations, extensions

_J

= Though UML starts prevailing, many other notations are in use
(today called Domain Specific Languages/DSLS)

— Tools, models, generated code, ... iIncompatible
— Hinder industrial success

MBSE (02341 f16), L11 15

Approaches

‘ DTU Compute

M

= Standardisation of a single notation: UML
= Standardisation of a transfer format

= Still many problems with exchanging models
—Need for other modeling notations

= Observation: Basic infrastructure for any CASE tool
IS Independent from the modeling notation

= CASE tools should be implemented using their own
technology

MBSE (02341 f16), L11 16

Outset S
M2 Unified Modelling Notation
M1 Model
MO User data

MBSE (02341 f16), L11

J \

J \

=
—]
=

o

o

D
modelling
notation
design-time
run-time

17

Petri net Example

‘ DTU Compute

PetriNet
t“
Object
1 1
2 sour
Node | Arc
S
9 1 targe
Transition Place k Token
:Petrinet
urce target
| :Transition {0 :Arc § :Place
/ \target sourcl \
— :Arc :Arc
W source targe
rget sougge
:Token — :Place (m - :Arc :Transition

MBSE (02341 f16), L11

=
—
=

plied Mathen P >
' o
>
|
ClassDiagram
*
| _Jk start
Class > Association
} end
mE RN
Association
:.Class & 2 Class
Association
| I I |

Outset

"What, if we would like to |
use another modelling

Lnotation! w

M2 Unified Modelling Notation
T A

M1 Model
f

MO User data

T = conforms to / is instance of

MBSE (02341 f16), L11

ClassDiagram

1 —

| _Jk start
P
} end

Class Association

'

A

Node Arc
1 target

<
S~ ITransitior" Place k— Token I
<
.
\\

-

19

=
—
=

Meta Object Facility (MOF) | =
“meta—meta—mode\ h
MOF notation , metamodelling
A A notation
| <
modelling notation , modell Lnonog
A notation d
| <
M1
Model . design-time
T J
MO \
User data - run-time

T = conforms to / is instance of

MBSE (02341 f16), L11

Beware a myth: Though “suggested”
by the first versions of MOF and
related standards, the number of
levels is NOT fixed!

LThere can be any number of levels!
20

Meta Object Facility (MOF) |57

M3 MOF notation

M2 Any modelling notation
M1 Model

MO User data

MBSE (02341 f16), L11

J \

J \

J \

=
—]
=

M

= ECore

Meta model
of YAWL

YAWL model

One
simulation
running on a
YAWL model

21

Discussion | S

=
=

M

= Are the four MOF levels any good?

= There is one level that we did not have before!
So, this seems to be more complicated!

= |[f UML can be defined in terms of itself, why should
we define it in terms of something else?

~ A
MOF distils the essence!
_ D

MBSE (02341 f16), L11

3. The Meta ObjeCt Facility ‘Dum =
- 1)
M3 MOF notation
\ y A 'L’\
M2 Any modelling notation
A
|
M1 Model
A
|
MO User data
_ J

T = conforms to / is instance of

MBSE (02341 f16), L11

[Thi ion is based on.
This presentation is
Meta Object Facility (MOF) Core
Specification, Version 2.0, OMG

Uormal/OG—O’l -01),
23

Meaning of "Meta-~

‘ DTU Compute

Meta (from Greek: peta = "after{, "beyond", J'with", "adjacea
prefix used in English in order to Nadicates concept which i gCtion

from another concept, used to complete or add terthe latté

In epistemology, the prefix meta- is used to medp about (ityyown category).
For example, metadata are data about data, someétiskag-eddout something
(who has produced them, when, what format the data are in and so on).
Similarly, metamemory in psychology means an individual's knowledge
about whether or not they would remember something if they concentrated
on recalling it. Furthermore, metaemotion in psychology means an

individual's emotion about his/her own basic emotion, or somebody else's
basic emotion.

Another, slightly different interpretation of this term is "about" but not "on
(exactly its own category). For example, in linguistics a grammar is
considered as being expressed in a metalanguage, or a sort of language for
describing another language (and not itself). A meta-answer is not a real
answer but a reply, such as: "this is not a good question”, "l suggest you ask
your professor". Here, we have such concepts as meta-reasoning and meta-
knowledge.

From: http://en.wikipedia.org/wiki/Meta

MBSE (02341 f16), L11 24

=
—]
=

Meaning of meta ot

M

Co-notations and meaning in Software Engineering:
= beyond, "one level higher”

= possibly self-referential
(with all the problems of self-referentiality)

ofien also Abuse of language
introduced by pe?op\e
- el working only of just too
much on the meta-level.
" a eSS am

MBSE (02341 f16), L11 25

3 . 1 . E M O F m Od el ‘ D“’ﬁtually, this comes from the \

EMOF Types

UML infrastructure
Core::Basic.

The MOF standard refers 10
and uses concepts and
notations from the UML

standard (the “UML
infrastructure”). -/

Element 79

A 0..1

ownedComment | 0..*

TypedElement

MBSE (02341 f16), L11

NamedFlement /annotatedEIement :
name: String [0.1] | 0..* Comment
A . body: String
type
S Type
0..1

26

EMOF Classes

Type

N\

‘ DTU Compute

| o

MultiplicityElement |

TypedElement

lower: Integer = 1

Class

class

isAbstract: Boolean = false

ownedAttribute

JAN

isOrdered: Boolean = false
isUnique: Boolean = true

upper: UnlimitedNatural = 1

JAY

Property

isSReadOnly: Boolean = false

0..1 1{ordered} O0..*

0..*
superClass

class

default: String [0..1]
isComposite: Boolean = false
isDerived: Boolean = false
isID: Boolean

0.1

Operation

‘ ownedOperation
0..1 {ordered} 0..*

MBSE (02341 f16), L11

To be continued on
next slides!

opposite

27

EMOF Classes (cntd.) |5

=
—
=

M

Additional constraints (e.g.):

= Qopposite properties are properly paired
= no cycles in inheritance structure

= an object can be contained in at most one container

MBSE (02341 f16), L11

28

EMOF Classes (cntd.)

‘ DTP Compgt? E;I-E
Details of slides 29 —
35 not too relevant
for this course!
TypedElement || MultiplicityElement TypedElement || MultiplicityElement
_ operation ownedParameter
Operation -2 Parameter

{ordered} O0..*
0..*

0..* raised Exception/

Type

MBSE (02341 f16), L11

29

EMOF Data Types

Type

JAN

Datalype

JAY

JAN

Primitivelype

Enumeration

MBSE (02341 f16), L11

DTU Compute

=
—
=

M

NamedElement
JAN
enumeration
ownedLiteral Enumeration

0.1 {ordered} 0..* Literal

30

=
—
=

EMOF Primitive Types |5 | 22
= Boolean

= String

" |nteger

= UnlimitedNatural (* for "infinity”)

MBSE (02341 f16), L11 31

EMOF Packages

DTU Compute
)epartment of Applied M

=
—
=

M

NamedElement

Package
package

uri: String ‘ ownedType
0..1 0..*
nestingPackage
0..1
0..*
nestedPackage

MBSE (02341 f16), L11

Type

32

EMOF Discussion

DTU Compute

=
—]
=

M

= Can EMOF be defined with its own concepts?

= |s it expessible enough?

MOF (CMOF), later.

(EMOF stands for Essential
MOF; we will discuss more
complete model, Complete

W

= What is missing (as compared to UML diagrams)?

= How does EMOF relate to ECore
(the model underlying EMF)?

= Can UML be expressed in it?

= Any other problems?

MBSE (02341 f16), L11

rEMF /| ECore might be the
reason, EMOF was
included in the MOF

kstandard.

\

_J

33

=
—]
=

3.2 Reflection capability |57

M

= Creating models and their instances (resp. meta-
models and their conforming models) dynamically

= Navigating between model elements and instance

— By navigation between different meta-levels in an

arbitrary way, MOF is not restricted to a fixed
number of levels.
~ h

“Reflection”: Knowing |
something (and reasoning)
about oneself.

_J

MBSE (02341 f16), L11 34

&ﬂeﬂign package

provides similgr
functionality in its

AP

Object

)&

Element

getMetaClass():Class
container():Element
equals(el:Object):Boolean
get(prop:Property):Object
set(prop:Property,val:Object)
isSet(prop:Property):Boolean
unset(prop:Property)

AN

NamedElement

Department of Applied Mathematics and Computer Science

DTU Compute
Ekkart Kindler

)
—
e

M

Type

isInstance(o:Object):Boolean

Package

N\

1 | package

Factory

createFromString(d:DataType,s:String):Object
convertToString(d:DataType,0:0bject):String
create(mc:Class):Element

For properties with more than one value, there exist ReflexiveCollection and
ReflexiveSequence (similar to Java Collections)!

MBSE (02341 f16), L11

35

‘ DTU Compute

M

4. XMI

= Mapping MOF-models and its instances to XML
In a standard way

= A MOF model is mapped to an XMLSchema for its
Instances

= XMI Is a standard associated with MOF

=>You can easily exchange MOF models

=>0nce you agree on the MOF-model, you can
exchange instances of that model
anrning: Ify

ou change the meta \

model, you often can no longer rea.d|
older versions of XMI instances of it!

That is why XML syntax is often

MBSE (02341 f16), L11 | explicitly defined. 4

Example (model)

‘ DTU Compute
epartment ot

=
—
=

M

PetriNet
)
Object
/\
/1 source
Node | Arc
A 1 target
Transition Place 0—* Token

MBSE (02341 f16), L11

Meta model for Petri nets

37

=
—
=

M

<?xml version="1.0" encoding="UTF-8"?>
<emof:Package xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:emof="http://schema.omg.org/spec/MOF/2.0/emof.xml" xmi:id="PetriNets"

name="PetriNets" uri="APetriNetEditorInl5Minutes">
<ownedType xmi:type="emof:Class" xmi:id="PetriNets.PetriNet" name="PetriNet">

<ownedAttribute xmi:id="PetriNets.PetriNet.object" name="object"
isOrdered="true"

lower="0" upper="*" type="PetriNets.Object" isComposite="true"/>
</ownedType>

<ownedType xmi:type="emof:Class" xmi:id="PetriNets.Object" name="Object"
isAbstract="true"/>

<ownedType xmi:type="emof:Class" xmi:id="PetriNets.Node" name="Node"
isAbstract="true, superClass="PetriNets.Object">
<ownedAttribute xmi:id="PetriNets.Node.name" name="name" isOrdered="true"
lower="0">
<type xmi:type="emof:PrimitiveType"
href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />
</ownedAttribute>
<ownedAttribute xmi:id="PetriNets.Node.in" name="in" isOrdered="true"

lower="0" upper="*" type="PetriNets.Arc"
opposite="PetriNets.Arc.target"/>

<ownedAttribute xmi:id="PetriNets.Node.out" name="out" isOrdered="true"
lower="0" upper="*" type="PetriNets.Arc"
opposite="PetriNets.Arc.source"/>

</ownedType>

MBSE (02341 f16), L11 38

DTU Compute

Exam I e C n td Department of Applied Mathematics and Computer Science
" Ekkart Kindler

=
—
=

M

<ownedType xmi:type="emof:Class" xmi:id="PetriNets.Arc" name="Arc"
superClass="PetriNets.Object">

<ownedAttribute xmi:id="PetriNets.Arc.source" name="source"
isOrdered="true"

type="PetriNets.Node" opposite="PetriNets.Node.out"/>

<ownedAttribute xmi:id="PetriNets.Arc.target" name="target"
isOrdered="true"
type="PetriNets.Node" opposite="PetriNets.Node.in"/>

</ownedType>

<ownedType xmi:type="emof:Class" xmi:id="PetriNets.Transition"
name="Transition" superClass="PetriNets.Node"/>

<ownedType xmi:type="emof:Class" xmi:1d="PetriNets.Place"
name="Place" superClass="PetriNets.Node">

<ownedAttribute xmi:id="PetriNets.Place.token" name="token"
isOrdered="true" lower="0" upper="*,
type="PetriNets.Token" isComposite="true"/>

</ownedType>

<ownedType xmi:type="emof:Class" xmi:id="PetriNets.Token"
name="Token" />

<xmi:Extension extender="http://www.eclipse.org/emf/2002/Ecore">
<nsPrefix>APetriNetEditorInl5Minutes</nsPrefix>
</xmi:Extension>

</emof:Package>

MBSE (02341 f16), L11

39

Example (instance)

MBSE (02341 f16), L11

DTU Compute DTU
Department of Applied Mathematics and Computer Science >
Ekkart Kindler >

40

DTU Compute

XMI instance

<?xml version="1.0" encoding="UTF-8"?>

<APetriNetEditorInl5S5Minutes:PetriNet xmi:version="2
xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance

.O"

| oy

—

rThe serialisation

of instances Car_1
be customized In
ktools like EMF.

—

xmlns:APetriNetEditorInlbMinutes="APetriNetEditorInl5Minutes">
<object xsi:type="APetriNetEditorInl5Minutes:Transition" name="tl1l"

in="//Qobject.7" out="//@object.4"/>

<object xsi:type="APetriNetEditorInlbMinutes:Transition" name="t2"

in="//@object.5" out="//@object.6"/>

<object xsi:type="APetriNetEditorInl5Minutes:Place" name="pl"

in="//@object.6" out="//Qobject.7">
<token/>
</object>

<object xsi:type="APetriNetEditorInl5Minutes:Place" name="p2"

in="//Qobject.4" out="//Qobject.5"/>

source="//Qobject.0" target="//Qobject.3"/>

<object xsi:type="APetriNetEditorInlbMinutes:Arc'
source="//Qobject.3" target="//Qobject.l1"/>

<object xsi:type="APetriNetEditorInlbMinutes:Arc"
source="//Qobject.l" target="//Qobject.2"/>

<object xsi:type="APetriNetEditorInlbMinutes:Arc"
source="//Qobject.2" target="//Qobject.0"/>

</APetriNetEditorInlb5Minutes:PetriNet>

<object xsi:type"APetriNetEditorInl5Minutes:Arck/f—
H

MBSE (02341 f16), L11

—

ere, references are
via paths (XPath).

If model elements

have ids, the |
eferences will be via

(the ids! .

41

DTU Compute

1ematics and Computer Science

6. Summ ary e
- 1)
M3 EMOF
\ N 4 \
\ /
M2 Any modelling notation
A
|
M1 Model
A
|
MO User data
_ J

T = conforms to / is instance of

MBSE (02341 f16), L11

42

DTU Compute
)epartment of App

=
—
=

M

Domain Specific Languages
= Domain Specific Language (DSL)
= Domain Specific Languages (DSLS)

MBSE (02341 f16), L11

43

DSL / DSLs ot ‘

M

= The terms DSL and DSLs are uses since the the
mid 90ties; "Domain Specific Automatic

Programming” even dates back to the mid 80ties’.

% D. R. Barstow: Domain-Specific Automatic Programming.
IEEE TSE, Vol. SE-11, no. 11, Nov. 1985, pp. 1321-1336

= Still, there is not is not a uniform or universal
understanding of what a DSL or what DSLs are;
It depends a bit on the background which
characterisitics of DSLs are considered to but
Important or relevant. [

*DSLs and MBSE are sometimes used
almost synonymously.

= This lecture gives an overview — but with a model-
based software engineering bias!

MBSE (02341 f16), L11 44

‘ DTU Compute

M

= DSL (singular):
A single domain specific language,
designed and realised according to some principles
and for a specific purpose or a specific domain

= DSLs (plural):
= Disipline and principles for designing and realising a DSL

= A technology or set of technolgies for designing and
realising a DSL (mostly from MBSE)

= A way of "thinking” software design (idioms)

MBSE (02341 f16), L11 45

1. Examples of DSLs

‘ DTU Compute

= COBOL
= Lisp
= PROLOG

= SQL (Structured Query Language - DB)
= BNF (Backus Naur Form - syntax definition)
= regex (regular expressions)
= |ex, yacc (compiler construction)

= Shell scripting languages
= OCL

MBSE (02341 f16), L11 46

‘ DTU Compute

= BPEL (Business process execution language)
BPML (Business process modeling language)

= YAWL

= Petri nets
= ECNO

= Trading strategy language (see next slide)

= PDF / PostScript
= HTML / CSS

MBSE (02341 f16), L11

=
—]
=

M

a7

Tool for testing FX strategies

‘ DTU Compute

Ekkart Kindler

Department of Applied Mathematics and Computer Science

2003

P

Strategy 1
New Strategy 2

Graph Plotter

2004 2005

Date

2006 2007

2008

Strategy 1

New Strategy 2 X

TReoinei e sy o e

Qe r=re ey

Close position;

for all currency in Top3Currencies{

if currency is not in Currency of Portfolio.LongPositions:

Cpen Portfolio.LongPositior{s with currency;

Editor Panel

LR L I B L L L R L L R L N R R RN R RN LR
1999 2000 2001 2002

2009 2010 2011

04/02/2000 |4
04/02/2010 E

Months

Analysis
Configuration
Panel

MBSE (02341 f16), L11

ﬁl

48

=
=

i

Counter-examples

= C

= C++
= C#

= Java
= Ruby
= Scala

= UML

MBSE (02341 f16), L11

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

49

‘ DTU Compute

M

2. Characteristics

Traditional distinction of "programming languages™:

= General Purpose Languages (GPL):

= universal
= The same thing can be achieved in many differnent ways

= Turing complete (can compute everthing)
* huge
= Special Purpose Language (SPL):
= made for a specific purpose
(adequate for this specific purpose)
= succinct and highly expressive (for a given purpose)
= typically, not Turing complete

= small

MBSE (02341 f16), L11 50

SPL and DSL?

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

)
—
e

M

GPL <

MBSE (02341 f16), L11

51

DSL characteristics

‘ DTU Compute

M

= Textual (language) vs graphical (notation)
= Programming vs. modelling
= Domain of application vs separation of concerns

= Way of thinking design vs
use of specific DSL technologies

= Abstraction vs technical

= User focus vs technical focus

= Language vs framework

= |diom oriented vs. programming oriented

MBSE (02341 f16), L11 52

Classification | e ‘

M

= Embedded DSL.:
Embedded to an existing programming language by
adding some framework for some purpose (often

some functional languages with syntactic sugaring
features)

' ages!
« Typically textual language
. C%‘Et)en programmed (with DSL

thinking” In mind))

= External DSL.:
Standalone language (graphical/textual) which is

then compiled or interpreted. Often realized bVAD_E.J_W

development tech /T Often: Focus on adequate
concrete syntax!

« Typically realized by using "DSL

MBSE (02341 f16), L11 L Aloaies” 2/

M

3. Parts of a DSL definition |

= Abstract syntax (see LO1):
language concepts and their relation
(API / domain model / framework)

= Concrete syntax (see LO1):
syntactical representation of concepts
(graphical or textual)

= Semantics (what it does):
Code generation or interpretation, which enacts
what an instance of the DSL says DSLTechno\g‘oerf .

MBSE (02341 f16), L11

‘ DTU Compute

4. Philosophy

M

= A DSLs should help decrease redundancy and
unnecessary work

= A DSL should help separating the variable or
generic parts of a software product from parts
which do not change

= A DSL should increase reuse

= A DSL should support abstraction form irrelevant
technical detalls

= A DSL should emphasize the domains idioms

MBSE (02341 f16), L11 55

Discussion compute

=
—
=

M

= Are Petri nets a DSL?

= To which extent is the course’s project (YAWL
editor/simulator) a "DSL” or "DSLs”

MBSE (02341 f16), L11 56

‘ DTU Compute

M

Discussion

= MBSE Technologies help implementing DSLs
fast and efficiently (mostly concerning abstract and
concrete syntax)

= Therefore, the terms MBSE and DSL are often used
In the same context (and sometimes mixed up)

MBSE (02341 f16), L11 57

