
Model-based Software Engineering

(02341, spring 2016)

Ekkart Kindler

Project (again)

Ekkart Kindler 1. Project Task

 Implement a graphical editor for a subset*

of YAWL and a simulator on top of that

graphical editor visualizing the behaviour

of a YAWL process

 This editor and simulator must be

implemented based on the ePNK**

*) see scope for the specific subset your tool

of YAWL thar must be supported

**) the ePNK will be discussed in tutorials 5-8

(see idea on next slides)

3 MBSE (02341 f16), L08

Ekkart Kindler YAWL

YAWL (Yet another Workflow Language)

a graphical notation for modelling and

enacting business processes

4 MBSE (02341 f16), L08

[from: http://www.yawlfoundation.org/pages/research/orjoin.html]

Ekkart Kindler ePNK

”The ePNK is a platform for Petri net tools based on

the PNML transfer format. Its main idea is to provide

generic Petri net types, which can be easily plugged

into it, and to provide a simple generic GMF editor,

which can be used for graphically editing nets of any

plugged in type.” [ePNK Homepage]

5 MBSE (02341 f16), L08

Ekkart Kindler ePNK

 A new Petri net type is defined by an EMF model,

which, basically, can be plugged in to the ePNK (t5)

 ePNK provides a simple graphical editor, which can

be customized (by programming) to feature specific

graphical representation of the new net type (t6)

 Additional consistency conditions on the Petri net

type can be plugged in too, as OCL or Java

constraints (t7)

 Applications like simulators with graphical feedback

can also be plugged in to the ePNK for some net

types (t8)

6 MBSE (02341 f16), L08

Ekkart Kindler ePNK

7 MBSE (02341 f16), L08

Ekkart Kindler YAWL Tool (after Tutorial 8)

8 MBSE (02341 f16), L08

Ekkart Kindler Scope

The tool must support the following YAWL features

 Start and end conditions (exactly on of each kind)

 Transition input/output: single, AND, XOR, OR

9 MBSE (02341 f16), L08

...
...

...

..
.

..
.

..
.

XOR

single

OR

AND

Different

versions of

joins and

splits can be

combined in

a single

transition!

Ekkart Kindler Scope (cntd.)

The tool must support the following YAWL features (cntd.)

 Reset arcs

 Support the page concept of ePNK (flattening

discussed in lectures/tutorial)

Data and organisation concepts do not need to be

supported

10 MBSE (02341 f16), L08

Ekkart Kindler Scope (cntd.)

The simulator must

 Provide graphical feedback on the current state of the

process (marking)

 Visually indicate the enabled transitions/actions,

and allow the user to select a transition to fire

 For XOR-joins and -splits allow the user to select from which

place a token should be consumed and to which place the

token should be produced

 For OR-splits allow the user to chose to which places a token

should be produced

 For OR-joins indicate (give a warning) that on some

unmarked input places a token might still arrive (and

graphically indicate from where)

11 MBSE (02341 f16), L08

Ekkart Kindler Submission

 The software as source code (exported Eclipse plugin projects)

 At least two YAWL examples (with reasonable processes)

 A report documenting your software (underlying models and

design), including (but not limited to):

 Intro and overiew of your project and ePNK extension

 Domain models (EMF modles) with detailed discussion

 Discussion of how your extension works together with the

ePNK (software models, interfaces, interactions)

 A brief handbook explaining the use of all features of your

software (for an end user) using your examples (standard

features of the ePNK as documented in the ePNK

handbook do not need to be explained in detail)

12 MBSE (02341 f16), L08

Ekkart Kindler

13 MBSE (02341 f16), L08

2. YAWL (concepts)

In this section, we introduce some additional notation

for modelling business processes with Petri nets in a

slightly more user friendly way: YAWL* (Yet another

Workflow Language)

 XOR-split / XOR-join

 AND-split / AND-join

 OR-split / OR-join

 Reset-arcs

Ekkart Kindler

14 MBSE (02341 f16), L08

Motivation

application

evaluation

result

positive

negative

One task: two different outcomes: We
would like to consider this as a single
activity with two possible outcomes!

Ekkart Kindler

15 MBSE (02341 f16), L08

Problem: One Task – Two Outcomes

application

evaluation

result

positive

negative

Read as Petrinet, this would be
wrong: both places, positive and
negative, will be marked!

Ekkart Kindler

16 MBSE (02341 f16), L08

Solution: Explicit XOR-Split

application

evaluation

positive

negative

Explicit XOR-Split (as
a graphical shortcut)

Ekkart Kindler

17 MBSE (02341 f16), L08

Petri Net Semantics for XOR-Split

application

evaluation

positive

negative

application

evaluation

positive

negative

XOR-split
its Petri net
interpretation

Ekkart Kindler

18 MBSE (02341 f16), L08

Petri Net Semantics for XOR-Join

XOR-join
its Petri net
interpretation

Ekkart Kindler

19 MBSE (02341 f16), L08

Petri Net Semantics for AND-Split

AND-split

its Petri net
“interpretation”;

a transition

Ekkart Kindler

20 MBSE (02341 f16), L08

Petri Net Semantics for AND-Join

AND-join

its Petri net
”interpretation”;

a transition

Ekkart Kindler

21 MBSE (02341 f16), L08

XOR-Split/Join

 An XOR-splits allows us to model an activity with
different outcomes as a single „transition“

 An XOR-join allows us to model an activity with
different preconditions as a single „transition“

 XOR-joins and XOR-splits correspond to conditional
routing.

Ekkart Kindler

22 MBSE (02341 f16), L08

AND-Split/Join

 AND-split and AND-join correspond to the usual

Petri net transitions;

 They have been introduced for symmetry reasons

only.

 AND-join and AND-splits correspond to parallel

routing.

Ekkart Kindler Example: OR-split/join

[from: http://www.yawlfoundation.org/pages/research/orjoin.html]

23 MBSE (02341 f16), L08

OR-split OR-join

Adds token to

some output

places (at least

one)

Needs tokens on at least one

input place; removes one token

for each place that has a token;

but  slides 24-27

Ekkart Kindler Example: OR-split/join

24 MBSE (02341 f16), L08

Ekkart Kindler Example: OR-split/join

25 MBSE (02341 f16), L08

Can fire

Ekkart Kindler Example: OR-split/join

26 MBSE (02341 f16), L08

Cannot fire! The

transition should

wait until the other

token has arrived!

When an input

place of an OR-join

transition is not

marked, the OR-

join should not fire,

if there still could

arrive a token from

somewhere!

Ekkart Kindler Example: OR-split/join

27 MBSE (02341 f16), L08

In complex examples, it is

“a bit tricky” to decide

whether a token could

arrive at some place! But,

a warning can be issued

when firing the transition,

that there is the potential

for a token to arrive from

somewhere!

Ekkart Kindler Reset-arcs

28 MBSE (02341 f16), L08

Reset arc For firing the transition,

we do not need any

token on this place; but,

when the transition

fires, ALL tokens on

that place are removed

(if there are any)!

Ekkart Kindler Reset-arcs: Semantics

29 MBSE (02341 f16), L08

On Writing Well

Ekkart Kindler

31 MBSE (02341 f16), L08

Motivation

Writing good texts is hard work!

Most of it can be learned and is

more about the writer’s attitude than

about talent:

 What is the purpose?

 What do I want to achieve?

 Who is the reader?

 How do I achieve my goals?

Ekkart Kindler

32 MBSE (02341 f16), L08

Motivation

Problems

 The readers can’t ask the writer

 The writer must foresee possible questions and

misunderstandings

(and take care of them)

 The writer should not assume too much

 The writer should not make implicit

assumptions or conclusions

Ekkart Kindler

33 MBSE (02341 f16), L08

Comprehensibility

When is a text comprehensibility?

Are there criteria for comprehensibility?

Langer, Schulz von Thun, Tausch:

„Sich verständlich ausdrücken!“

Ekkart Kindler

34 MBSE (02341 f16), L08

Criteria

 Simplicity (-- - 0 + ++)
 simple words

 simple sentences

 short sentences

 concrete (e.g. by example)

 Structuring (-- - 0 + ++)
 one idea after the other

 form and content are coherent

 conclusive

Ekkart Kindler

35 MBSE (02341 f16), L08

Criteria

Conciseness (-- - 0 + ++)

 shortness

 focussed on essentials

 no empty words and sentences

 Inspiring Additions (-- - 0 + ++)

 motivating

 interesting

 diversified

Ekkart Kindler Important issues

 Set the scene / context:

Don’t assume anything (except readers pragmatics)

for granted

 Different levels of abstraction:

Typical student mistake: always on the lowest level!!

 Guide the reader:

Why do you say what you are saying

 Bring the point (argument) home – completely!

 ”Spiralform writing”:  blackboard

Writing linearly about a complex network of

concepts

36 MBSE (02341 f16), L08

Ekkart Kindler

37 MBSE (02341 f16), L08

More rules (of thumb)

 Important stuff first / high-lighted

strong verbs (avoid adjectives /
adverbs)

short sentences

use singular whenever possible

 familiar terms and expressions

use “active” wherever possible

clear headlines

…

Ekkart Kindler

38 MBSE (02341 f16), L08

Comprehensibility

The above criteria hold for almost all
texts

For scientific texts:

 consistent terminology (same term for
same concept throughout the text):

 My favourite counter example
„Deutscher Fußballreporter“:
Ball, Rund, Kulle, Leder, Ding, …

 Same structure for alike structured
content

Architecture (discussed on blackboard)

Ekkart Kindler

40 MBSE (02341 f16), L03

MVC

Model

Domain model and
functions

View

Representation of model
and user interaction

Controller

Makes changes and calls
functions of the model

queries

informs on
changes

makes changes

selects

informs on
user interactions

