
Model-based Software Engineering

(02341, spring 2016)

Ekkart Kindler

VII. Constraints and Validation

Ekkart Kindler 1. Motivation

It is difficult, inadequate, or sometimes even

impossible to express the exact relationship between

some domain concepts in pure

UML class diagrams

 We need to express the precise nature of these

relationships in a different way

 UML class diagrams made slightly more general

(not every instance of it is legal in the domain)

 Formulate some additional restrictions

(which exclude the illegal instances)

 These additional restrictions are called constraints

3 MBSE (02341 f16), L07

Ekkart Kindler

4 MBSE (02341 f16), L07

Example (cf. L01)

Petri net
model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Object

Node
name: String

Domain model for Petri nets

Ekkart Kindler

5 MBSE (02341 f16), L07

Example

Petri net
model

Place Transition

1 source

1 target

Arc

*

PetriNet

Token
*

Object

Node
name: String

Domain model for Petri nets

Ekkart Kindler

6 MBSE (02341 f16), L07

Example (cf. L01)

Petri net
model

Place Transition

1 source

1 target

Arc

*

PetriNet

context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Token
*

Object

Node
name: String

Domain model for Petri nets

Ekkart Kindler Questions

 How to formulate constraints?

 How and when to check them?

And more technically:

 Where and how to register constraints?

7 MBSE (02341 f16), L07

Ekkart Kindler 2. Formulating constraints

There are different ways to formulate constraints:

 Dedicated constraint languages (like OCL)

 Programming languages (like Java)

 Logic

 ...

8 MBSE (02341 f16), L07

Ekkart Kindler

9 MBSE (02341 f16), L07

2.1 OCL

Object Constraint Language (OCL)

 OCL is an OMG (Object Mangagement Group) standard in a

family of standards related to UML

 OCL is dedicated to formulate additional constraints on top

of UML models independently from a specific platform and

programming language

 There are different technical ways to automatically check the

validity of OCL constraint (dependent on the underlying

modelling technology, see 4)

 OCL is actually more:

 Formulate pre and post conditions for methods

 ”Implement” methods

See context

options later
See “body” option later

Ekkart Kindler

10 MBSE (02341 f16), L07

Example

Petri net
model

Place Transition

1 source

1 target

Arc

*

PetriNet

context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Token
*

Object

Node
name: String

Stands for option

<<invariant>>:

constraint applies to

all instances of the

context (here Arc)

Domain model for Petri nets

Ekkart Kindler

11 MBSE (02341 f16), L07

OCL basics

OCL expressions

 start from the context object

in OCL referred to by self

 from an object, may access attributes and

operations (by dot-notation and resp. names)

 may navigate along associations

 may call operations and built-in functions

 can use Boolean operations: and, or, not, ...

 and comparison operations: = , >, <, <=, ...

context Arc inv:
(self.source.oclIsKindOf(Place) and
 self.target.oclIsKindOf(Transition))
or
(self.source.oclIsKindOf(Transition)
 and
 self.target.oclIsKindOf(Place))

Ekkart Kindler

12 MBSE (02341 f16), L07

Example (SE2 e10)

Ekkart Kindler

13 MBSE (02341 f16), L07

Example (SE2 e10)

context HWComponentInstance inv:

self.definition->size() > 0 and

self.definition.hardware

Ekkart Kindler

14 MBSE (02341 f16), L07

Example (SE2 e10)

Ekkart Kindler

15 MBSE (02341 f16), L07

Example (SE2)

Ekkart Kindler

16 MBSE (02341 f16), L07

Example (SE2 e10)

context Connection inv:

self.source.definition.out->forAll(m1 |

 self.target.definition._in->exists(m2 | m1=m2))

 and

self.target.definition.out->forAll(m1 |

 self.source.definition._in->exists(m2 | m1=m2))

Ekkart Kindler

17 MBSE (02341 f16), L07

OCL advanced

 If an attribute or association has cardinality less or

equal 1 the reference to that attribute or association

returns a single value of the respecitive type (or

”null”, if it does not exist)

 If the cardinality is greater 1, the reference to it

returns a set (collection) of the respective type

 These set operations are accessed via ->

 There are operations to select elements from sets

and to quantify on sets.

Ekkart Kindler

18 MBSE (02341 f16), L07

OCL advanced

 operations on sets

 set->size()

 set->iterate(x; res = init | exp(x,res))

 ...

 Quantification on sets:

 set->forAll(x | exp(x))

 set->exists(x | exp(x))

(can be nested)

 ...

 OCL built-in operations and types

Ekkart Kindler
OCL expressions: Summary

 There is much, much more (see OCL standard)!!

 It is important

 to know that OCL exists,

 be able to read OCL constraints,

 be able to formulate simple OCL constraints,

 be able to look up constructs in the standard

 Advantages

 Simple things can be expressed quickly

 Constraints can be expressed independently from

a technology and programming language

 Disadvantages

 Readability and expressiveness

19 MBSE (02341 f16), L07

Ekkart Kindler

20 MBSE (02341 f16), L07

OCL contex

 The context can be a class
(self refers to an instance of that class)

 option inv

 The context can be an operation
(self refers to the object on which the operation is called)

 options pre, post and body:
pre and post define a pre- and post-condition
body defines the result of an operation

 The context can be an attribute or association
 (self refers to the object to which it belongs)

 options init and derived

Ekkart Kindler OCL Opinion

 OCL looks and feels much like programming with a

flavour of logic

 Programmers are not so used to it, and often get

OCL wrong

 In most modelling frameworks, it is possible to

formulate constraints in your favourite programming

language (for complex constraints this might be

easier for you)

21 MBSE (02341 f16), L07

Ekkart Kindler

22 MBSE (02341 f16), L07

2.2 PL (Java)

Sometimes, it is more convenient to express a

constraint in a programming language (typically, in the

target language of the generated code).

The way this is done depends on the specific

technology used.

But typically, there is an abstract class for constraints

with some validation method which needs to be

extended.

Ekkart Kindler Example (see tutorial 7)

public class SomeConstraint extends AbstractModelConstraint {

 public IStatus validate(IValidationContext ctx) {

 EObject object = ctx.getTarget();

 // do whatever you need to do to establish whether

 // the constraint is violated or not

 if (object instanceof YAWLNet) {

 EObject container = object.eContainer();

 if (container instanceof PetriNet) {

 // return a failure in case the constraint is violated

 // for the given context

 return ctx.createFailureStatus(new Object[] {container});

 // and return a success otherwise

 return ctx.createSuccessStatus();

 } }

} }

23 MBSE (02341 f16), L07

Ekkart Kindler 3. When to validate

Two different policies when to validate a constraint:

Live: Whenever an instance is changed (by some

command), the ”relevant” constraints are

automatically checked; if a constraint is violated,

the command is ”rolled back” (undone

automatically)

 live contraints cannot be violated

Batch: Only checked when a validation is requested

(programmatically or by the end-user)

 batch constraints may be invalid for a while;

violations are detected at validation time only;

 the end-user has the responsibility to fix them

24 MBSE (02341 f16), L07

Ekkart Kindler Discussion

Live or batch: Which is better?

25 MBSE (02341 f16), L07

Ekkart Kindler 4. Validation framework

 OCL has a precisely defined meaning

(independently from a specific programming

language or implementation of the model)

 The way to ”hook in” OCL constraints, however,

depends on the used technology

(e.g. EMF Validation Framework)

26 MBSE (02341 f16), L07

Ekkart Kindler Example

<extension point="org.eclipse.emf.validation.constraintProviders">

 <constraintProvider cache="true">

 <package namespaceUri="http://se.compute.dtu.dk/mbse/yawl"/>

 <constraints categories="org.pnml.tools.epnk.validation">

 <constraint

 id="dk.dtu.compute.mbse.yawl.validation.correct-arc-connection"

 lang="OCL"

 mode="Live"

 name="Arc connection constraint for YAWL nets"

 severity="ERROR"

 statusCode="401">

 <message>

 The arc {0} with this arc type is not allowed between these elements.

 </message>

 ...
27 MBSE (02341 f16), L07

Constraints need to be plugged in

wrt. a defined category (here we

use the one defined by the ePNK).

Defines an OCL constraint

Defines the mode/policy

Defines the severity

Some status code (in the ePNK numbers > 400

should be used for PNTD violations)

Ekkart Kindler Example

 <description>

 Arcs must be between a place and a transition, a transition and a place, or

 between two transitions. Only arcs between a place and a transition may

 have a type!

 </description>

 <target class="Arc:http://se.compute.dtu.dk/mbse/yawl">

 <event name="Set">

 <feature name="source"/>

 <feature name="target"/>

 <feature name="type"/>

 </event>

 </target>

...

28 MBSE (02341 f16), L07

Defines the target objects (instances of Arc

class from the Ecore package for YAWL nets)

For a live constraint, we need to define

which events should issue a validation of

this constraint. Here: the set event on the

features source, target or type of an Arc

object.

Ekkart Kindler Example

 <![CDATA[

 (self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and

 self.target.oclIsKindOf(pnmlcoremodel::TransitionNode))

 or

 (self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

 self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) and

 self.type->size() = 0)

]]>

 </constraint>

 ...

29 MBSE (02341 f16), L07

The actual OCL constraint (note that the context

(Arc) and the option (inv) are not mentioned –

have been defined in the xml code above.

Discussion: what does self.type-> size() = 0 do?

Ekkart Kindler Example

 <constraint

 lang="Java"

 class="dk.dtu.compute.mbse.yawl.constraints.StartEndConditions"

 severity="ERROR"

 mode="Batch"

 name="One start and end place"

 id="dk.dtu.compute.mbse.yawl.validation.one-start-and-end-place"

 statusCode="402">

 <target class="YAWLNet:http://se.compute.dtu.dk/mbse/yawl"/>

 <description>

 A YAWL net must have one start and end place.

 </description>

 <message>

 The net {0} does not have exactly one start place and one end place.

 </message>

 </constraint>

 ...

30 MBSE 2341 f16), L07

Defines an Java constraint

Defines the mode/policy

FQN of Java class implementing the constraint

Message in case the

validation fails ({0}, {1}, ...

refer to the objects

returned by the validation).

Ekkart Kindler Example

 ... <!-- there could be more Java or OCL constraints here -->

 </constraints>

 </constraintProvider>

 </extension>

31 MBSE 2341 f16), L07

Ekkart Kindler 5. Summary

 Constraints conceptually belong to the domain

model

 Different ways to formulate constraints (OCL, Java,

...)

 Uniform way to validate them in all applications

(properly using the model) via the Validation

Framework; the framework defines how to

technically add constraints to a model

 Important: chose the right validation policy/mode

(live/batch)

32 MBSE (02341 f16), L07

Ekkart Kindler 6. Interactive OCL Console

The “Interactive OCL” console will help you checking whether

the syntax of your OCL expressions is correct and even help

you come up with expressions in correct syntax.

 Install the “Interactive OCL” console via

Help Install New Software...

 Work with update site:

 Mars - http://download.eclipse.org/releases/mars/

 Select feature:

 “OCL Examples and Editors” from the category “Modeling”

33 MBSE (02341 f16), L07

Ekkart Kindler Interactive OCL Console

34 MBSE (02341 f16), L07

After successful installation (and restart):

 Open the console view and select “Interactive OCL”

Ekkart Kindler
Interactive OCL Console (M1)

35 MBSE (02341 f16), L07

Eclipse development workbench

Ekkart Kindler
Interactive OCL Console (M2)

36 MBSE (02341 f16), L07

Eclipse development workbench

