
Model-based Software Engineering 

(02341, spring 2016) 

Ekkart Kindler 

 



II. Modelling with a Purpose 



Ekkart Kindler 1. Models to which end 

 Understanding the world (conceptual models, 

domain models) 

 Understanding what the software is supposed to do 

(requirements) 

 

 Understanding and finding your way round in 

existing software 

 Outline the idea of how to realize the software 

(architecture) 

 Overview of componenents and their interplay 

 Detailed design and realization of the software 

3 MBSE (02341 f16), L03 



Ekkart Kindler 
Models to which end (cntd.) 

 Generate parts of the software automatically 

 

 Define data representations (XML, database 

schemas, ...) 

 

 Define interfaces between different components of 

the software  

 

 ... 

4 MBSE (02341 f16), L03 



Ekkart Kindler 

5 MBSE (02341 f16), L03 

1 target 

2. Domain model 

  

Petri net model 

Place Transition 

1 source 

Arc 

* 

PetriNet 
context Arc inv: 
( self.source.oclIsKindOf(Place) and   
 self.target.oclIsKindOf(Transition)  ) 
or 
( self.source.oclIsKindOf(Transition)   
   and   
 self.target.oclIsKindOf(Place) ) 

Token 
* 

Node 

Object 



Ekkart Kindler Ecore model 

 

6 MBSE (02341 f16), L03 



Ekkart Kindler Representations of model 

Same model can have different representations: 

 Graphical / tree (as of Tutorial 1) 

 Java 

 Ecore 

 XML Schema (XSD) 

 

Different representation might serve different purposes 

and have a different focus! 

What would the focus for XSDs, Java and Ecore be? 

 

 

 7 MBSE (02341 f16), L03 



Ekkart Kindler 3. Software Models 

 

 

 

 

8 MBSE (02341 f16), L03 



Ekkart Kindler How??? 

 How could the TreeViewer, which does not know anything 

about Petri nets (and the classes representing the concepts 

of Petri nets), know how this tree should be shown?  

9 MBSE (02341 f16), L03 

:Place 

:Transition 

:Arc 

:Transition 

:Place 

:Arc 

:Arc 

source 

target source 

target 

target source 

:Arc 
source target 

:Petrinet 

:Token 

: input 

input 
TreeViewer Object 

1 



Ekkart Kindler TreeViewer 

MBSE (02341 f16), L03 

input 

TreeViewer Object 

1 

ITreeContentProvider 

ILabelProvider 

contentProvider 

1 

labelProvider 

1 getText(Object) : String 
getImage(Object): Image 

getChildren(Object) : List 
getImage(Object): Image 

Provides the label and 

the icon for each object 

For each object, provides 

the current list of 

children.  

10 



Ekkart Kindler 
3.2 EMF: Use of TreeViewer 

 In EMF, this is even more complicated: using a 

generic ContentProvider, which creates the 

respective ItemProviders and delegates to them 

11 MBSE (02341 f16), L03 



Ekkart Kindler 
3.3 Update Viewer on Changes 

 In order to make sure that the viewer properly 

updates, whenever changes occur, it registers itself 

as listener to the respective elements (actually to 

their ItemProviders. 

12 MBSE (02341 f16), L03 

:Place 

:Transition 

:Arc 

:Transition 

:Place 

:Arc 

:Arc 

source 

target source 

target 

target source 

:Arc 
source target 

:Petrinet 

:Token 



Ekkart Kindler Discussion 

 Domain models 

 

 

vs 

 

 

 Software models 

13 MBSE (02341 f16), L03 



III. Design Patterns (How / Software Models) 



Ekkart Kindler 

15 MBSE (02341 f16), L03 

1. Introduction 

 Design patterns (in software 

engineering) are the distilled experience 

of software engineering experts on how 

to solve standard problems in software 

design. 

 



Ekkart Kindler 

16 MBSE (02341 f16), L03 

Design Patterns in SE: 

 

 Gamma, Helm, Johnson, Vlissides: 

Design Patterns. Addison-Wesley 1995. 

 

 Eric Freeman, Elisabeth Freeman: 

Head First Design Patterns. O’Reilly 

2004 [FF] 

 … 



Ekkart Kindler 

17 MBSE (02341 f16), L03 

Disclaimer 

 Design patterns are a topic of their own, 

worth being taught as a separate course 

(e.g. seminar/special course) 

 This lecture gives just a glimpse of the 

general idea and some patterns, which 

are important to understand and use 

EMF 



III. Design Patterns (How / Software Models) 

2. Examples 



Ekkart Kindler Example: Observer (GoF) 

Name and classification 

Observer, object, behavioural 

Intent 

”Define a one-to-many dependency between 

objects so that an object changes all its dependents 

are are notified and updated automatically” [GoF]. 

Also know as 

Dependents, Publish-Subscribe, Listener 

 

dd MBSE (02341 f16), L03 



Ekkart Kindler Example: Observer 

Motivation 

[...] maintain consistency between related objects 

without introducing tight coupling (which increases 

reusability) [...] 

 

Typical Example 

... update views when the underlying model 

changes ... 

 

 

dd MBSE (02341 f16), L03 



Ekkart Kindler 

21 MBSE (02341 f16), L03 

Example: Observer 

Structure 

1 

Subject 
attach(Observer) 
detach(Observer) 

notify() 

Observer 

update() 

ConcrObs 

update() 

* 

observers 

ConcrSub 
state: State 

getState() 
setState(State) 

subject 

notify() { 

  forall o:observers 

    o.update() 

} 



Ekkart Kindler Example: Observer 

Participants (see structure) 

 Subject 

 knows its observers 

 provides an interface for attaching and detaching Observer objects 

 Observer 

 defines the updateing interface for being notified 

 

 ConreteSubject 

 stores the state (of interest) 

 sends notifications 

 ConreteObserver 

 Implements the Observer‘s updating interface to keep its state 

consistent 

 

 

 

 

22 MBSE (02341 f16), L03 



Ekkart Kindler Example: Observer 

Collaboration 

23 MBSE (02341 f16), L03 



Ekkart Kindler 

24 MBSE (02341 f16), L03 

Scheme (GoF) 

 Name 

 Classification 

 Intent 

 Also known as (aka) 

 Motivation 

 Application 

 Structure 

 Participants 

 Collaboration 

 Consequences 

 Implementation 

 Sample code 

 Known uses 

 Related patterns 



Ekkart Kindler 

25 MBSE (02341 f16), L03 

Example: Simulation Algorithm 

1 

SimulationState 

Simulator 
 

Interface 
 enabled(SimulationState, Transition) 

fire(SimulationState, Transition) 

1 

<<interface>> 

algorithm 

Algorithm 
 enabled(SimulationState, Transition) 

fire(SimulationState, Transition) 



Ekkart Kindler 

26 MBSE (02341 f16), L03 

Pattern: Strategy (GoF) 

Name and classification 

Strategy, object-based, behavioural 

Intent 

Define a family of algorithms, encapsulate each one, 

and make them interchangeable. Strategy lets the 

algorithm vary independently from clients that use it 

[GoF] 

Motivation  

Avoid hard-wiring of algorithms for making it easier 

to change the algorithm … 



Ekkart Kindler 

27 MBSE (02341 f16), L03 

Pattern: Strategy (cntd.) 

Structure  

 

Context 
 contextInterface() 

Strategy 
 algInterface() 

AlgorithmB 

 algInterface() 

1 

strategy 

AlgorithmA 

 algInterface() 

AlgorithmC 

 algInterface() 



Ekkart Kindler 

28 MBSE (02341 f16), L03 

Pattern: Strategy (cntd) 



Ekkart Kindler 

29 MBSE (02341 f16), L03 

Questions 

 Is the “simulation algorithm” a strategy? 

 

 



Ekkart Kindler 

30 MBSE (02341 f16), L03 

Pattern: Abstract Factory 

Name and classification 

Abstract factory, object, creational 

Intent 

Provide an interface for creating families of related 

or dependent objects without specifying their 

concrete classes [GoF] 

Motivation  

Use of different implementations in different contexts 

with easy portability … 



Ekkart Kindler 

31 MBSE (02341 f16), L03 

Pattern: Abstract Factory (cntd) 

AbsFactory 
 createProdA() 
createProdB() 

Factory1 
 createProdA() 

createProdB() 

Factory2 
 createProdA() 

createProdB() 

Client 

AbsProdA 

ProdA1 ProdA2 

AbsProdB 

ProdB1 ProdB2 



Ekkart Kindler 

32 MBSE (02341 f16), L03 

Pattern: Singleton (GoF) 

Name and classification 

Singleton, object-based, creational 

Intent 

Ensure that a class has only one instance, and 

provide a global point of access to it [GoF] 

Motivation  

… 



Ekkart Kindler Other relevant patterns 

 Factory Method 

 

 Command 

(see Tutorial 2) 

 

 Adapter 

 

 

 

 

 

 33 MBSE (02341 f16), L03 



Ekkart Kindler 

34 MBSE (02341 f16), L03 

3. Summary 

 GoF present 23 patterns 

 There are many more (and more complex 
combinations of patterns, e.g. MVC --) 

 

 “Pattern terminology” can be used to communicate 
design! 

 Patterns should not be used to schematically 

 Generated code, typically, makes use of many 
patterns.  Automatic code generation “saves us 
making some design decisions” (observer, 
singleton, factory, and adapters are part of the EMF-
generated code) 



Ekkart Kindler 

35 MBSE (02341 f16), L03 

Scheme (GoF) 

 Name 

 Classification 

 Intent 

 Also known as (aka) 

 Motivation 

 Application 

 Structure 

 Participants 

 Collaboration 

 Consequences 

 Implementation 

 Sample code 

 Known uses 

 Related patterns 



Ekkart Kindler 

36 MBSE (02341 f16), L03 

4. Model View Controller (MVC) 

The domain models are an (the) essential part of 

the software 

 

In addition to that we need 

 Information about the presentation of the model to 

the user 

 The coordination with the user 

 



Ekkart Kindler 

37 MBSE (02341 f16), L03 

Modelle View Controller (MVC) 

                 Model 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

View 

Controller 

:Arc 



Ekkart Kindler 

38 MBSE (02341 f16), L03 

MVC 

  

Model 
 

Domain model and 
functions 
 
 

View 
 

Representation of model 
and user interaction 

Controller 
 
Makes changes and calls 
functions of the model 

queries 

informs on 
changes 

makes changes 

selects 

informs on 
user interactions 



Ekkart Kindler 

39 MBSE (02341 f16), L03 

MVC 

  

Model 
 

Domain model and 
functions 
 
 

View 
 

Representation of model 
and user interaction 

Controller 
 
Makes changes and calls 
functions of the model 

queries 

informs on 
changes 

makes changes 

selects 

informs on 
user interactions 



Ekkart Kindler 

40 MBSE (02341 f16), L03 

MVC 

MVC is a principle (pattern / architecture) 

according to which software should be structured 

  

Eclipse and GEF (as well as GMF) are based on 

this principle and guide (force) you in properly 

using it 



Ekkart Kindler 

41 MBSE (02341 f16), L03 

EMF, GMF and MVC 

                Model 

Place Transition 

1 source 

1 target 

Arc 

* 

PetriNet 

Token 
* 

Node 

Object 

View 

Controller 

:Arc 



Tutorial 2: Q & A 



Tutorial 3: Discussion Assignment 3 


