=
—
e

i

Model-based Software Engineering
(02341, spring 2016)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

Il. Modelling with a

DTU Compute
Department of Applied Mathematics and Computer Science

1. Models to which end |57

M

= Understanding the world (conceptual models,
domain models)

= Understanding what the software is supposed to do
(requirements)

= Understanding and finding your way round in
existing software

= Qutline the iIdea of how to realize the software
(architecture)

= Overview of componenents and their interplay
= Detailed design and realization of the software

MBSE (02341 f16), L0O3 3

Models to which end (cntd.)

‘ DTU Compute

=
—]
=

M

= Generate parts of the software automatically

= Define data representations (XML, database
schemas, ...)

= Define interfaces between different components of
the software

MBSE (02341 f16), L0O3

= DTU Compute DTU
2. Domain model et =
PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))
or
ObjECt (self.source.oclIsKindOf(Transition)
and
A self.target.oclIsKindOf(Place))
1 source
Node | Arc
A 1 target

Transition Place 9—— Token

MBSE (02341 f16), L0O3

DTU Compute

)
—
e

E CO re m O d e I Department of Applied Mathematics and Computer Science >
Ekkart Kindler >
E Petrinet
= name : EString
[0..1] petrinet [0..1] petrinet
[0.*] nodes [0..*] arcs
| Eﬁ MNode E Arc
= name : EString [L.1] source [0.*] out
_[1.1] target [0, in
H Transition] [H Place H Token
1] place [0.*] tokens
MBSE (02341 f16), LO3 6

. DTU Compute DTU
Representations of model |

Same model can have different representations:
= Graphical / tree (as of Tutorial 1
= Java

= Ecore

= XML Schema (XSD)

Different representation might serve different purposes
and have a different focus!

What would the focus for XSDs, Java and Eco

MBSE (02341 f16), L0O3

3. Software Models

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

)
—
e

M

MBSE (02341 f16), L0O3

How???

= How could the TreeViewer, which does not know anything

DTU

Compute

about Petri nets (and the classes representing the concepts
of Petri nets), know how this tree should be shown?

TreeViewer

input\

4 |B% Petrinet My first net
4 () Placepl
¢ Token
[] Transition t1
4 () Place p2
¢ Token
¢ Token
[] Transition t2
A Arcpl->tl
A Arctl -> p2
A Arcp2->t2
A Arct2-> pl

MBSE (02341 f16), L0O3

1

Object

\:

iInput

:Petrinet

:Token —

urce target]
:Transitio (so :Arc g} :Place [
/\target sourc;(\
:Arc :Arc m
\/ source | targV/
rget sougge -
Place {a :Arc ‘} ‘Transitiorf=

=
=

M

TreeViewer

DT
1
input
TreeViewer . Object
labelProvider : 4
| ILabelProvider Provides the label and
1 | getText(Object) : String the icon for each object
getlmage(Object): Image _
. - . .
| ITreeContentProvider For each object, provides
contentProvider| getChildren(Object) : List the current list of
i getImage(Object): Image \Chlldren-

MBSE (02341 f16), L0O3 10

=

3.2 EMF: Use of TreeViewer \ .

Department of Applied Mathematics and Computer Science
Ekkart Kindler

i

= In EMF, this is even more complicated: using a
generic ContentProvider, which creates the

respective IltemProviders and delegates to them

MBSE (02341 f16), L03 11

=
—]
=

3.3 Update Viewer on Changes

M

‘ DTU Compute

= |n order to make sure that the viewer properly
updates, whenever changes occur, it registers itself

their ltemProviders.

a O3 Petrinet My first net ‘Petrinet |
4 (O Place pl
¢ Token
[] Transition t1 .| source target
4 O Place p2 Transition& JArc —>1 :Place
¢ Token /\target sourcd\
¢ Token
[] Transition t2
A Arcpl ->tl | A Are B
A Arctl -> p2
A Arcp2->12 \/ source I targey
A Arct2->pl _jarget souge N
:Token — :Place < :Arc —>» :Transitiorp

MBSE (02341 f16), L0O3 12

Discussion

= Domain models

VS

= Software models

MBSE (02341 f16), L03

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

)
—
e

M

13

=
—
e

i

lll. Design Patterns (How / Software Models)

DTU Compute
Department of Applied Mathematics and Computer Science

A T
Flx+Ax)= Z() 8

OO __{2 71 82818284

7
:Xz

1. Introduction

|

Originally, the term was h
introduced in architecture
LA\exander ot al. 1977. D

Eres_ign patterns (in software
- eeri .
gineering) are the distilled experience

of s | |
o Sg;‘\t/vg/are engineering experts on how
standard problems in software

design.
~ A
Freeman & Freeman call this
“experience reuse’”
J

N

MBSE (02341 f16), L0O3

ﬁThe

underlyin
EMF extens

u)atterns.

generated code and the\
g sramework of

jvely use design

_J

15

Department of Appli thema and Computer Science

D
ften called the “Gangd of j_
@03{" ((:GOF | Go4).
= Gamma, Helm, Johnson, Vlissides:
Design Patterns. Addison-Wesley 1995.

Design Patterns in SE:

‘ DTU Compute

= Eric Freeman, Elisabeth Freeman:
Head First Design Patterns. O'Reilly
2004 [FF}

MBSE (02341 f16), L03 16

Disclaimer E

M

= Design patterns are a topic of their own,
worth being taught as a separate course
(e.g. seminar/special course)

= This lecture gives just a glimpse of the
general idea and some patterns, which
are important to understand and use
EMF

MBSE (02341 f16), L03 17

=
—
e

i

lll. Design Patterns (How / Software Models)

2. Examples

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
=

Example: Observer Gor) |5

M

Name and classification

Observer, object, behavioural
Intent

”’Define a one-to-many dependency between

objects so that an object changes all its dependents

are are notified and updated automatically” [GoF].
Also know as

Dependents, Publish-Subscribe, Listener

MBSE (02341 f16), L0O3 dd

Example: Observer ot

=
=

M

Motivation

[...] maintain consistency between related objects

without introducing tight coupling (which increases
reusability) [...]

Typical Example
... update views when the underlying model

changes ...
Roughly fo\\owinsﬂ
GoF

MBSE (02341 f16), L0O3 dd

DTU Compute
epartment ot

=
—
=

Example: Observer =
Structure
Subject | Observer
3tttachh((00bbserver)) observers | update()
etac server
notify() A
N\ \/notify() { h
forall o:observers
o.update()
; %

Conersub | | Concrobs

state: State <—

getstate() subject update() - ~

setState(State) iect is (roughty

oes not W GEMF’ the Sub) rver is Adapter
The concrete ObServer doe e EObjectimpl, the Obse s also an
- ed to “know - L adapter since |
necessanly N8 then the subject 1S (it is called gense of GoF and
concrete subject; date())| Adapterinthe
MBSE (4 d as a parameter 10 UP re). —
(0, passe mo 1

=
—]
=

Example: Observer ot

Participants (see structure)
= Subject

knows its observers

M

provides an interface for attaching and detaching Observer objects
= Observer

defines the updateing interface for being notified

= ConreteSubject

stores the state (of interest)
sends notifications

= ConreteObserver

Implements the Observer's updating interface to keep its state
consistent

MBSE (02341 f16), L0O3 22

Example: Observer s

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
=

i

Collaboration

_)

Black board discussion

k _

MBSE (02341 f16), L03

Scheme (GoF)

Department of Applied Mathematics and Computer Scienc

‘ DTU Compute

Ekkart Kindler

=
—
=

M

= Name = Participants
= Classification = Collaboration
= |ntent = Consequences
= Also known as (aka) * Implementation
= Motivation = Sample code
= Application = Known uses
= Structure » Related patterns
(gometimes there 18 more. o \
Variants, “Counter indications J
...

MBSE (02341 f16), L0O3

24

Example: Simulation Algorithm |

Simulator

DTU Compute

=
—
=

M

<<interface>>

L 2

SimulationState

MBSE (02341 f16), L0O3

algorithm

~
”

Interface

enabled(SimulationState, Transition)
fire(SimulationState, Transition)

JAN

Algorithm

enabled(SimulationState, Transition)
fire(SimulationState, Transition)

25

=
—]
=

Pattern: Strategy Gor) |57

M

Name and classification

Strategy, object-based, behavioural
Intent

Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the

algorithm vary independently from clients that use it
[GOF]

Motivation

Avoid hard-wiring of algorithms for making it easier
to change the algorithm ...

MBSE (02341 f16), L0O3 26

Pattern: Strategy (cntd.) |57

=
—
=

M

Structure
Context S Strategy
contextInterface() strategy alginterface()
/\
AlgorithmA AlgorithmB AlgorithmC
algInterface() algInterface() algInterface()

MBSE (02341 f16), L0O3

27

Pattern: Strategy (cntd) |

MBSE (02341 f16), L03

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
=

i

28

Questions

DTU Compute

=
=
=

M

= |s the “simulation algorithm” a strategy?

MBSE (02341 f16), L0O3

fPatterns should not be app\'\ed\

\
too mechanically’
But sometimes details make a

29

‘ DTU Compute DTU

E\Ihat we called

Pattern: Abstract Factory

Name and classification
Abstract factory, object, creational

Intent
Provide an interface for creating families of related
or dependent objects without specifying their
concrete classes [GoF]

Motivation

Use of different implementations in different contexts
with easy portabillity ...

Eactory up to NOW.

e

MBSE (02341 f16), L0O3 30

Jepartn \Pp

Pattern: Abstract Factory (cntd) | %™

ied Mathematics and Computer Science

=
—
=

M

\4

AbsFactory

createProdA()

createProdB()

JAY

AbsProdA

Client

N\

/s

ProdAl

ProdA2

Factoryl

Factory2

createProdA()
createProdB()

createProdA()
createProdB()

ﬁThis patt
EMF generated C

MBSE (02 come Variations)‘-

ern is used in the)
ode (With

\ 4

AbsProdB

A

_J

ProdB1

ProdB2

ol

Pattern: S|ng|eton (GoF) ‘ DT e sled Hisifaoretiesand Bonmomer Sdleres

=
—
=

M

Name and classification

Singleton, object-based, creational
Intent

Ensure that a class has only one instance, and

provide a global point of access to it [GOF]
Motivation

g A
gee [GoF] or [FF] for details.
k w,

MBSE (02341 f16), L0O3 32

Other relevant patterns

= Factory Method

= Command
(see Tutorial 2)

= Adapter

MBSE (02341 f16), L0O3

‘ DTU Compute

=
—
=

The Factory Meth
different from the Abstract Factory.

od pattern is

M

he EMF Commands are
commands in this sense
(actually very sophisticated
ones).

The Eclipse command is not
a command in the sense of
GoF! An Eclipsé command
is basically just a name,
which is than imp\emented

a handler (which in some

mmand in the

way is a co

ore).

\smense of GoF and a bit /

33

‘ DTU Compute

3. Summary

M

= GoF present 23 patterns

= There are many more (and more complex
combinations of patterns, e.g. MVC --)

= “Pattern terminology” can be used to communicate
design!

= Patterns should not be used to schematically

= Generated code, typically, makes use of many
patterns. Automatic code generation “saves us
making some design decisions” (observer,
singleton, factory, and adapters are part of the EMF-
generated code)

MBSE (02341 f16), L0O3 34

Scheme (GoF)

Department of Applied Mathematics and Computer Scienc

‘ DTU Compute

Ekkart Kindler

=
—
=

M

= Name = Participants
= Classification = Collaboration
= |ntent = Consequences
= Also known as (aka) * Implementation
= Motivation = Sample code
= Application = Known uses
= Structure » Related patterns
(gometimes there 18 more. o \
Variants, “Counter indications J
...

MBSE (02341 f16), L0O3

35

4. Model View Controller (MVC) | %= s e

=
—
=

M

The domain models are an (the) essential part of

the software

In addition to that we need

= [nformation about the presentation of the model to

the user

= The coordination with the user

MBSE (02341 f16), L0O3

/Note: These parts of the
software can be modelled too

(don’t get confused: ,,mo.dels
are everywhere®); domain
Kmodel vs. software model

N

_

36

Modelle View Controller (MVC) ‘ I

-

View

| 4

=
—
=

M

N

Token

MBSE (02341 f16), L0O3

37

MVC

‘ DTU Compute

v

N

Representation of model
and user interaction

lew

Notes: .
. This is the rough idea

only! |
« There are many vanantg
(e.g. GEF/GMF uses this

& 3 bit differently)

—

queries A
/ selects
/ informs on \
// changes mforms on |
, user interactions \,4
A)

Model /Controller A

_ <€
Doma_am model and makes changes Makes changes and calls
functions functions of the model

AN / - /

MBSE (02341 f16), L0O3

38

MVC

qgueries

/ informs on

‘ DTU Compute

N

v

lew

Representation of model
and user interaction

EX

K Model does not know
anything about its
views or controllers!

. Many different views
possible

Domain model and
functions

N

. Changes from other
K parts of the software

selects

changes informson %
, user interactions \4
.)
Model /Controller A
<€

makes changes

MBSE (02341 f16), L0O3

.

Makes changes and calls
functions of the model

J

39

I\/I V C DTU Compute

M

MVC is a principle (pattern / architecture)
according to which software should be structured

Eclipse and GEF (as well as GMF) are based on
this principle and guide (force) you in properly
using it

o { work out with EMF

If things do nO
for you, you might have messed

with the MVC pattern.)

MBSE (02341 f16), L0O3 40

EMF, GMF and M¥

DTU Compute D.I.U
Department of Applied Mathematics and Computer Science
‘ oo

View

14

\ Here: In EMF/GMF, these
parts can be generated_
automatically (see tutorial

|_EditParts B

PetriNet

!

Object

o

Model

Node

_4 sour

Arc

-
éé 1 target

Place |‘— Token

E Transition

MBSE (02341 f16), L0O3

41

=
—
e

i

Tutorial 2: Q & A

DTU Compute
Department of Applied Mathematics and Computer Science

f(x+Ax):§ T p X

=
—
e

i

Tutorial 3: Discussion Assignment 3

DTU Compute
Department of Applied Mathematics and Computer Science

f(x+Ax)= Z‘(m() 8

OO __{2 71 82818284

