=
—
e

i

Model-based Software Engineering
(02341, spring 2016)

Ekkart Kindler

DTU Compute
Department of Applied Mathematics and Computer Science

|. Introduction

DTU Compute
Department of Applied Mathematics and Computer Science

M

Programmy’sotuware N ‘

Software Engineer

Software Engineering

_

(e)

Program

Programmer

Programmin
\9/ o
v
== ?'(l n)

MBSE (02341 f16), L02 3

Modelling

MBSE (02341 f16), L02

DTU Compute

M

q File Edit Diagram Mavigate Search Project Run Window Help
- QiR E e
 [rshoma vlo VB I A- B T Bi- ok

[7 Project Explarer 53 = O || [d] simple.petrinets_diagram &3

S
[=-1=F APetriMetEditorIniSMinutesExamples
= simple.petrinets
@ simple. petrinets_diagram : ;

I=F SE2-ExamplePraject [integration/test /tru tl
I=F SE2-Test

<_ | l E,Tasks E Consale EProperties 23
Oz i = (B s
o= Outline 23 = |ﬂ| = B|| 4 transition t2
Core Property
Marne
Appearance
A

DTU Compute

Department of Applied Mathematics and Computer Science

Ekkart Kindler

=
—
e

i

i }{’ H -~ |125% e

t2

Yalue
o= g2

ﬁ | f[\:l R.esource | i
[5¥N Reposita. ..

Palette 4

% Select
1%, Zoom

[= Mote

4 Arc

< Transition
<4 Place

< Token

MBSE (02341 f16), LO2

)
—
e

DTU Compute
Department of Applied Mathematics and Computer Science

Ekkart Kindler

M

protected Pe
super();

[PetriNet ol

0
) Requi. return PetrietsPa
‘ * orgf
org.
J h 1 * ©79-{ public EList<PetriNets. Objec!
org.
N ; if object = nul) {

ce s .
[g ‘object = new EObjectCon! ist<PetriNets.Object>(Petri

— ’_'T_t-‘—_—‘ Object oo etum objec;
—_ 7 ol)
- / | acssmeanaci? L || |
; < [Noole é——(Ave | ors. e
- e [s
- 4 pey
1 sou ors.)
S —— Node Arc s BN
\————,j‘ i~ ©°%9-4 public Object eGPt featurelD, boolean resolve, boolean col
[] 7 |3
S

o)
'INetsPackage.PETRI_NET__OBJECT:
/ 1 getObject();
}
7 7 returMeuper.eGet(featurelD, resolve, coreType);
Transition Place |‘— Token

Analysis
Design
Implementagon Code is
NY | generated

MBSE (02341 f16), L02 6

Example of a Petri net

MBSE (02341 f16), LO2

DTU Compute

Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—
e

M

=
—
=

‘ DTU Compute

M

Stages

= Examples
= Taxonomy (done on blackboard)

= Model (developed on blackboard)

MBSE (02341 f16), L02 8

DTU Compute DTU
Models (Meta Models) i =
PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))
or
Obiect (self.source.oclIsKindOf(Transition)
J and
A self.target.oclIsKindOf(Place))
/1 source
Node | Arc
A 1 target

Transition Place 9—— Token

Meta model for Petri nets

MBSE (02341 f16), L02

DTU Compute DTU
Don’t think models as Java | =
PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))

or
ObjECZ' (self.source.oclIsKindOf(Transition)

and
A self.target.oclIsKindOf(Place))
/1 source
Node | Arc
A 1 target

Transition Place 9—— Token

MBSE (02341 f16), L02 10

Syntax (abstract and concrete)

graphical /
concrete
syntax

‘Token

‘ DTU Compute

=
—]
=

M

MBSE (02341 f16), L02

:Petrinet
source target
:Transition [€<— :Arc —>1 :Place
target source 0
abstract syntax
(as an UML object
:Arc diagram) :Arc
source
J/ target |,
target source
:Place < :Arc >{ :Transition

11

Benefits of Modelling | S

=
—]
=

M

= Better understanding

= Mapping of instances to XML syntax (XMl)

= Automatic code generation

= API for creating, deleting and modifying model
= Methods for loading and saving models (in XMI)

= Standard mechanisms for keeping track of changes
(observers)

MBSE (02341 f16), L02

12

=
—
=

G M F ‘ DTU Compute
Department of Applied Mathematics and Computer ¢

M

PetriNet
Transition t
Object
Place 4
I |
_2} sour
Arc Node |2 Arc
N
1 target
Token #

Transition Place |‘— Token

generate an _
. :Petrinet
editor
[~ :Transitior {wrce :Arc targ/e‘t :Place [
/ \target sourc[\
— :Arc :Arc]
\/SOUI‘CQ I targe!
:Token — :Place & :Arc =S Transitiorf=

MBSE (02341 f16), L02 13

Benefits of Modellin DTUCOMDE vt g oot
g (Cntd.) ‘ epartment of Applied Mathematics and Computer Science

Ekkart Kindler

= Better Understanding

= Mapping of instances to XML syntax (XMl)

= Automatic Code Generation

= API for creating, deleting and modifying model
= Methods for loading and saving models (in XMI)

» Standard mechanisms for keeping track of changes
(observers)

= Editors and GUIs

MBSE (02341 f16), LO2

14

‘ DTU Compute

M

"Buzzwords”

= Model Driven Architecture® (MDA®)
OMG'™ software development approach for
separating business logic from platform specific
details

= using models
= automatic generators (for code and other models)

= Model-based Software Engineering (MBSE)
General term for making “better” use of models for

easing the software development

Ultimately: Getting rid of programming
resp. technical artefacts.

MBSE (02341 f16), L02

15

Theses

‘ DTU Compute

M

= We will always have programming and
programmers!

= We should always teach programming!

= But, software engineers should be trained in their
engineering and modelling skills! %ﬁ

= And this is where they should be at their best!
= Most of the rest can be automated!

= Eventually, programming will be for software
engineers as assembler is today for programmers.

MBSE (02341 f16), L02 16

‘ DTU Compute ‘

3. Modelling with a Purpose

Anologies:

= Models as floor plans (see earlier slides)

= Architects and construction engineers use quite
different kind of plans — driven by the puprose

= They even use models (miniatures)

= Models as maps
= Understand the world (= domain)

= Find your way round in the software

MBSE (02341 f16), L02 17

oy
18

Department of Applied Mathematics and Computer Science

DTU Compute
Ekkart Kindler

MBSE (02341 f16), LO2

=
—]
=

Software vs Programming

‘ DTU Compute

M

= For programs (small software), models are often not
needed, and making them might be a waste of time.

= For software, they are essential for building
something which works out and the different pieces
fit to each other

MBSE (02341 f16), L02 19

=
—
e

i

Tutorial 1: Q & A/ Wrap up (BBD)

DTU Compute
Department of Applied Mathematics and Computer Science

-)
fx+Ax)= Z(“() 0 —_
L) .X2

E bz {z 71 82818284

=
—
e

i

Il. Modelling with a Purpose

DTU Compute
Department of Applied Mathematics and Computer Science

._A‘JQ// *
A
FOerAx)= Z(i) 5

E ~o—R.7! 82818284

1. Models to which end |5 e

lathematics ar

Ekkart Kindler

nd Computer Science

=
=

M

= Blackboard Discussion (BBD):

Purpose Kind of model

MBSE (02341 f16), L02

22

‘ DTU Compute

2. Domain models

M

Petri net example revisited (see next two slides)

Discussion:

= Should in/out (opposites of target and source) be
In domain model?

= \WWhat makes it a domain model?

= \What is the difference to a data model or data base
schema?

MBSE (02341 f16), L02 23

= = DTU Compute DTU
Petri net: Domain model |5 =
PetriNet
‘ context Arc inv:
(self.source.oclIsKindOf(Place) and
‘* self.target.oclIsKindOf(Transition))
or
Obiect (self.source.oclIsKindOf(Transition)
J and
A self.target.oclIsKindOf(Place))
/1 source
Node | Arc
A 1 target

Transition Place 9—— Token

MBSE (02341 f16), L02 24

DTU Compute

)
—
e

E CO re m O d e I Department of Applied Mathematics and Computer Science >
Ekkart Kindler >
E Petrinet
= name : EString
[0..1] petrinet [0..1] petrinet
[0.*] nodes [0..*] arcs
| Eﬁ MNode E Arc
= name : EString [L.1] source [0.*] out
_[1.1] target [0, in
H Transition] [H Place El Token
1] place [0.*] tokens
MBSE (02341 f16), LO2 25

. DTU Compute DTU
Representations of model |

Same model can have different representations:
= Graphical / tree (as of Tutorial 1
= Java

= Ecore

= XML Schema (XSD)

Different representation might serve different purposes
and have a different focus!

What would the focus for XSDs, Java and Eco

MBSE (02341 f16), L02

DTU Compute

Petrinet.java

=
—]
=

M

/** @model */
public interface Petrinet {

/** @model opposite="petrinet" containment="true" */
List<Node> getNodes () ;

/** @model opposite="petrinet" containment="true" */
List<Arc> getArcs();

/** @model */
String getName () ;

MBSE (02341 f16), L02

27

DTU Compute

Arc.java

=
—]
=

M

/** @model */
public interface Arc {

/** @model opposite="out" required="true" */
Node getSource() ;

/** @model opposite="in" required="true" */

Node getTarget() ;

/** @model opposite="arcs" transient="false" */

Petrinet getPetrinet() ;

MBSE (02341 f16), L02

28

DTU Compute

Node.java

=
—
=

M

/** @model abstract="true" */

public interface Node {

/** @model opposite="nodes" transient="false" */
Petrinet getPetrinet() ;

/** @model opposite="target" */
List<Arc> getlIn() ;

/** @model opposite="source" */
List<Arc> getOut();

/** @model */
String getName () ;

}

MBSE (02341 f16), L02

29

)
—
e

DTU Compute

n L] n
I ran S Itl O n ava Department of Applied Mathematics and Computer Science
u Ekkart Kindler

M

/**
* (@model
*/

public interface Transition extends Node {

MBSE (02341 f16), L02 30

DTU Compute
Jepartment ot Appliec M

Place.java

=
—
=

M

/**
* (@model
*/

public interface Place extends Node {

/**

* @model opposite="place" containment="true"“
*/
List<Token> getTokens() ;

MBSE (02341 f16), L02

31

DTU Compute

_rC)kIEFLjETVEi eperiment of Applied Mathematics and Computer Science

=
—
=

M

/**
* (@model
*/

public interface Token {

/**

* @model opposite="tokens" transient="false"
*/
Place getPlace() ;

MBSE (02341 f16), L02

32

DTU Compute

/** @model */
public interface Petrinet {

/** @model opposite="petrinet" containment="true"
List<Node> getNodes () ;

/** @model opposite="petrinet" containment="true"
List<Arc> getArcs() ;

/** @model */
String getName () ;

MBSE (02341 f16), L02

*/

*/

=
—]
=

M

33

3. Software Models | S s e

=
—
=

M

Petri net example (cntd.): Models for
= (small part of) the generated code
= framework the generated code uses

MBSE (02341 f16), L02 34

‘ DTU Compute

3.1. Eclipse: JFace

M

= “JFace is a Ul toolkit with classes for handling many

common Ul programming tasks.”
[]

= Viewers are a core part of editors (there are different
kinds of viewers), which are generic.

= Here, we discuss the TreeViewer, which is the basis
for the automatically generated tree editor for Petri
nets.

MBSE (02341 f16), L02 35

https://wiki.eclipse.org/JFace
https://wiki.eclipse.org/JFace

TreeViewer

TreeViewer

DTU Compute
Department of Applied Mathematics and Computer Science
Ekkart Kindler

=
—
=

M

input

4 D}; Petrinet My first net
4 (O Place pl
¢ Token
[] Transition t1
4 () Place p2
¢ Token
¢ Token
[] Transition t2
A Arcpl->tl
A Arctl -» p2
A Arcp2->t2
A Arct2-> pl

MBSE (02341 f16), L02

>l Object

-
Assuming that the input

object (model) is a Petri

net
-

~N

J

36

TreeViewer

DTU Compute
Department of Applied Mathematics and Computer Science

=
—
=

M

input

TreeViewer

Shows the input as a

of a tree view like
opening and closing
sub-trees, etc)

N

tree (with all the features

~

J

MBSE (02341 f16), L02

>l Object

-

Root object of the tree
which is to be shown In
the TreeViewer

.

~

J

37

How???

‘ DTU Compute

=
—]
=

M

= How could the TreeViewer, which does not know

anything about Petri nets (and the classes
representing the concepts of Petri nets), know how

this tree shloud be shown?

4 |B% Petrinet My first net
4 () Place pl
¢ Token
[] Transition t1
a (O Place p2
¢ Token
¢ Token
[] Transition t2
A Arcpl->tl
A Arctl -> p2
A Arcp2-> 12
A Arct2->pl

MBSE (02341 f16), L02

:Token

\: input

:Petrinet

- L 0 target |
Transition& :Arc —=>| :Place
/\target ourq!\

— :Arc :Arc =
W source targe¥/

rget sougge -
— :Place é :Arc é :Transitiorp=

38

TreeViewer

DT
1
input
TreeViewer . Object
labelProvider : 4
| ILabelProvider Provides the label and
1 | getText(Object) : String the icon for each object
getlmage(Object): Image _
. - . .
| ITreeContentProvider For each object, provides
contentProvider| getChildren(Object) : List the current list of
i getImage(Object): Image \Chlldren-

MBSE (02341 f16), L02

TreeViewer o

w—
—
| e

M

1
input\
TreeViewer . Object
'abe'P”ﬂ ILabelProvider /VViII come from the A
1 | getText(Object) : String generated code
getImage(Object): Image (ItemProviders for each

kind of object in the

. model): edit code
| ITreeContentProvider | _) /
contentProvider| getChildren(Object) : List " In the tutorial, you will)
1 getImage(Object): Image

change the item provider
for Arcs for changing the

Qabels for arcs. y
MBSE (02341 f16), L02

Similarly for Properties

a Dg Petrinet My first net

4 () Place pl
¢ Token
[] Transition t1
4 () Place p2
¢ Token
¢ Token
[] Transition t2
A Arcpl->tl
A Arctl -» p2
A Arcp2->t2
A Arct2-> pl

[_| Properties &3

Property
In
Name
Out

MBSE (02341 f16), L02

Value
A Arct2 -> pl
= p1
A Arcpl -> tl

Department of Applied Mathematics and Computer Science

‘ DTU Compute

Ekkart Kindler

D1y

>
>

\: inp'ut

:Petrinet

:Token

. urce target ||

:Transmoré :Arc % :Place

Atarget sourCA
:Arc :Arc —

WV source I targeV/

rget sougge .
Place {a :Arc & ‘Transitiorf—
= b v =
=@ o |

_

IPropertySourceProvider
(not discussed here)

~

J

41

=
—
=

3.2 EMF: Use of TreeViewer — |%=m o s

M

= In EMF, this is even more complicated: using a
generic ContentProvider, which creates the

respective IltemProviders and delegates to them

4)

ldea Is discussed on
blackboard (BBD)

. J

MBSE (02341 f16), L02 42

3.3 Update Viewer on Changes

= In order to make sure that the viewer properly

‘ DTU Compute

=
—]
=

M

updates, whenever changes occur, it registers itself

as listener to the respective elements (actually to

their ltemProviders.

MBSE (02341 f16), L02

/
ldea Is discussed on

blackboard (BBD); more
details next time

\—

\

_/

43

