

Model-based Software Engineering (02341, spring 2016)

Ekkart Kindler

DTU Compute

Department of Applied Mathematics and Computer Science

I. Introduction

DTU Compute

Department of Applied Mathematics and Computer Science

- What is "software engineering"?
- What is "software"?
- software program
- software engineering programming

Programm

Software

Software Engineer

Software Engineering

If somebody has built a garage, would we let him built a skyscraper? No, never!

We let him built software? Yes we would!

If somebody has written a program, would

Programming

But, of course we should not!

Die Menge aller **Programme**, **Prozeduren** und **Objekte**, zusammen mit den zugehörigen **Daten** und der **Dokumentation**, die für eine lauffähige Anwendung nötig oder wünschenswert sind.

[frei nach Informatik DUDEN und Hesse]

The sum of all **programs**, **procedures** and **objects** along with the associated **data** and **documentation**, which are necessary (or at least desirable) for running an application on a computer system.

... and a glimpse of how software can be developed by using models — without doing any programming at all.

Models are the "floor plans" of software engineers, and are the key to the success of software projects.

Idea for some Software

DTU Compute

Department of Applied Mathematics and Computer Science **Ekkart Kindler**

- Examples
- Taxonomy (done on blackboard)
- Glossary
- Model (developed on blackboard)

Rule: Never ever start making a
UML model without having looked at
some examples first and naming the
main concepts (taxonomy)!

Models (Meta Models)

DTU ComputeDepartment of Applied Mathematics and Computer Science

Ekkart Kindler

Don't think models as Java

DTU Compute

Department of Applied Mathematics and Computer Science **Fkkart Kindler**

PetriNet meta model build-time Object Node Arc 1 target Place Transition Token is an instance of :Petrinet :Transition source target :Place :Arc **↑** target source model runtime :Arc :Arc **V** source source :Token :Place :Transition :Arc

- Better understanding
- Mapping of instances to XML syntax (XMI)
- Automatic code generation
 - API for creating, deleting and modifying model
 - Methods for loading and saving models (in XMI)
 - Standard mechanisms for keeping track of changes (observers)

Progra Not a good answer here!

 Standard technology for mapping abstract to concrete syntax: EMF / GMF / ...

DTU

- Better Understanding
- Mapping of instances to XML syntax (XMI)
- Automatic Code Generation
 - API for creating, deleting and modifying model
 - Methods for loading and saving models (in XMI)
 - Standard mechanisms for keeping track of changes (observers)
 - Editors and GUIs

Idea for some Software

DTU Compute Department of Applied Mathematics and Computer Science Ekkart Kindler

mputer Science

There are tools that partially support this idea already today (e.g. Eclipse and EMF/GMF). You will learn how to use them – and the general idea behind them in this course!

Analysis

Design

Implementation

Coding

Code is generated

- Model Driven Architecture® (MDA®)
 OMG[™] software development approach for separating business logic from platform specific details
 - using models
 - automatic generators (for code and other models)
- Model-based Software Engineering (MBSE)
 General term for making "better" use of models for easing the software development

Ultimately: Getting rid of programming resp. technical artefacts.

• We will always have programming and programmers!

- We should always teach programming!
- But, software engineers should be trained in their engineering and modelling skills!
- And this is where they should be at their best!
- Most of the rest can be automated!
- Eventually, programming will be for software engineers as assembler is today for programmers.

Anologies:

- → Lecture 2
- Models as floor plans (see earlier slides)
 - Architects and construction engineers use quite different kind of plans – driven by the puprose
 - They even use models (miniatures)

- Models as maps
 - Understand the world (→ domain)
 - Find your way round in the software

Different level of abstraction and detail

Different focus

Different aspects

→ Different purpose

 For programs (small software) models are often not needed, and making them might be a waste of time.

 For software they are essential for building something which works out and the different pieces fit to each other

To be continued ...

Lecture 2:

Modelling with a purpose!

- Introduction and Motivation
- Organization
 - Organisation of this course
 - Project
- Tutorial
 - Tutorial 1: Getting started with EMF (Petrinet example)
 - Overview of task and steps
 - DO IT