02291: System Integration
Week 3

Hubert Baumeister

huba@dtu.dk

DTU Compute
Technical University of Denmark

Spring 2018

=
—
=

i

Contents

User Stories
Activity Diagrams

Acceptance Tests

User stories

v

Basic requirements documentation for agile processes
Extreme Programming: Simplifies use cases

"story” the user tells about the the system
Focus on features

» "As a customer, | want to book and plan a single flight from
Copenhagen to Paris”.

functional + non-functional requirement
e.g. "The search for a flight from Copenhagen to Paris shall
take less than 5 seconds”

user story cards: index cards

v

v

v

v

v

Example of user stories

Each line is one user story:

o Students can purchase monthly parking
passes online.

o Parking passes can be paid via credit
cards.

» Parking passes can be paid via PayPal.

o Professors can input student marks.

o Students can obtain their current seminar
schedule.

o Students can order official transcripts.

o Students can only enroll in seminars for
which they have prerequisites.

o Transcripts will be available online via a
standard browser.

Scott Ambler 2003-2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm

Example of user story cards

"Use the simplest tool possible”
— index cards, post-its, ...
» electronically: e.g. Trello (trello. com)

e A

7.5,

Scott Ambler 2003-2014 http://www.agilemodeling.com/artifacts/userStory.htm

trello.com
http://www.agilemodeling.com/artifacts/userStory.htm

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

Two different ways of building the system

Traditional: Build the system by
layer/framework

antation Layer

Application L{Lyer ’
(:_)omain La;e;‘

Database / Infrastructure Layer

R e

1

Hubert

Two different ways of building the system

Traditional: Build the system by ~ Agile: Build the system by user
layer/framework story

User User User
Story Story Story

Presentation Layer Rresentation Layer

Application Layer Application Layer

Domain Layer Domain Layer

Database / Infrastructure Layer Dathbage / Infrastructure Layer

Comparision: User Stories / Use Cases

Use Case Use Story
» Advantage: Overview over » Advantage: user story
functionality driven
» Disadvantage: Use case » Disadvantage: Overview

driven development over the functionality is lost

Example: Login

Use case
name: Login

actor: User User stories

main scenario 1 User logs in with
1 User logs in with username and password

username and password 2 User logs in with NEMID
alternative scenario
1’ User logs in with NEMID

User Story Maps

bl'gnnize Manage Manage M
Email Email Calendar Goniac
_ _ _ _—
Sea{w:h Filer Cumpose Raud bele:‘re View Create Update View Create Update Delete
Email Emails Email Email Email Calendar Appt Appt Appt Contact Contact Contact
Searclil] Move C:Zmen?‘ Open s== Delete View lis " Create Update View = gﬁmh Upda—
by T e basic email of appts basic contents Appt 1 contact
14 T email appt /location Eelanh i
iKeywioed B A3 enail A BIEE e Al e AONICURT A ISl e N Bemn il IO DR
Create™™ Send Open View Lo Create Accept/
sub RTF e- RTFe- Monthly RTF appt Reject/T
folders mail mail formats entative
Lrengiie A 0 AR e e Release 1
Limit Gend fo Empty Vi G Add Delete
pen iew reate Propose Update
Search HTMLe- HTMLe- DEfed poijy bl newtime gt |adaresl| (CCHioch
i mail mail e Format appt oy Infa
field _ — - B = el = = L g g = e
Limit Open
Set Mandato
?:?rcn email eA:;gchm ry,lf()pﬁo
Fields il et Ha Release 2
Search Get View Get View Import
attachm address Weekl address Attachm Contacts
ents from B mcr‘?‘ from ents
i ey contacts _or' _s_ contacts = Rl HSeoi
Search Send Add Export
sub Attachm Seorch Attachm Contacts
Calendar
folders ents ents
e i ki S ~ Release 3

Shrikant Vashishtha http://www.agilebuddha.com/wp—content/uploads/2013/02/IMAG0144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png

Combining Use Cases and User Stories

1. Use case diagram: Overview
2. Use case scenarios give user stories
3. User story driven implementation by priority

Problem: Changing Requirements

Requirements can change
» Feedback: design, implementing, using
— clarification, changing, and new requirements
» The business case changes
Different type of software

» s-type: mathematical function, sorting: complete
specfication

» p-type: real world problems, e.g., chess: modelling the real
world
» e-type: embeded into socia-technical systems.

Requirements change as the environment changes.
System changes the environment: e.g., operating system

Requirements management: Waterfall

» Defined requirement management process
» E.g. Agreement of all stakeholders
» Changed / new requirements

» Cost of change not predictable
— Avoid changing/new requirements if possible

Requirements management: Agile Methods

High
Priority

Modeled in /

greater detail

Modeled in

lesser detail \

Low
Priority

[

Each iteration implement the highest-
priority work items

V=

Each new work item is
prioritized and added to
the stack

6

Work items may be
reprioritized at any time

CIOCaoanion

> Work items may be removed
at any time
A
Copyright 2002-2014
Work Items Py‘.;ﬁgnllw Ambler

Scott Ambler 2003-2014 http://www.agilemodeling.com/artifacts/userStory.htm

» Cost of change

» New / changed requirements not done yet: zero costs
» Changed requirements already done: the cost of a
requiment that can not be implemented

http://www.agilemodeling.com/artifacts/userStory.htm

Contents

User Stories
Activity Diagrams
Introduction

Basic Concepts

Acceptance Tests

Examples of the use of Activity Diagrams
Shows main- and alternative scenarios of use cases

User

Travel Agency

0 flights found]
i N [error in input data)|

Reports an error
in the flight data

Returns a list
of flights with
booking number

and price

Business Processes

Confirm
Oetention
Decsion
'
nform.
Lef patient of
| Rights

Record
Detention
Decision

lan Sommerville, Software Engineering — 9, 2010

[Not Available]

Transfer to
Police Station

Transfer to
Secure
Hospital

inform
Social Care
Tnform Next @
of Kin
Update
Register

asystems
MHC-PMS.

[Dangerous]

‘Admit to
Hospital
Dangerous]

esystem»
Admissions
System

Hubert

Activity Diagram Concepts

Activity Diagram Execution

Hubert

Activity Diagram Execution

Activity Diagram Execution

Activity Diagram Execution

Activity Diagram Execution

Hubert

Activity Diagram Execution

Hubert

Activity Diagram Execution

Subactivities

Receive
Order

Delver Order
Ipriorty order]

Subactivities

Hubert

Subactivity Deliver Order

Swimlanes / Partitions

Fulfilliment

Fill Order

Customer Service Finance
Receive
Order
Send
Invoice
Receive
Payment
Close
Order

Objectflows / Dataflows

COuhﬁl*jch,

, object node
o N
Hecq ive Order Make
Invoice Payment

*_pm P
Receive) Orderé Make
Invoice Order (=7 Payment

Hubert

Pins

activity name
A)
v
Deliver Order
—== Regular Delivery
[else]
> Order
[Rush Onder])
Ovarnight i
» Dalivery i
o
paramester
1 S

Hubert

Contents

User Stories
Activity Diagrams

Acceptance Tests
Introduction
Fit and Fitnesse

Why testing?

v

Validation testing
» Tests that the user requirements are satisfied
» Have we built the right system?
Defect testing
» Tests that the system has no defects
» Have we built the system right?
Documentation

1 System properties

2 Surprising or non-intuitive behaviour of the system

3 Bugs and bug fixes, also known as regression testing
(Prevents from reintroducing the bug later)

Experiment with the system

v

v

v

Types of tests

1. Developer tests (basically validation testing)
a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating
classes)
c) System tests / Integration tests (cooperating components)
2. Release tests (validation and defect testing)

a) Scenario based testing
b) Performance testing

3. User tests
a) Acceptance tests

Acceptance Tests

Traditional testing

Developer User Quality Assurance (QA)

define

user reguirements

UserReqyirments

understand
reguiremenis

define
system requirements

understand
irements

T create tests

run the tests
—

[defect found]

fix defects

[no defects]

Hubert

Acceptance Tests in Agile processes

Test-Driven Development

Developer User Quality Assurance (QA)

efine
user requirements

UserRequirments

Select the
feature / user story
h hiahest orio

Feature / User Story|

understand
user story

()

[more fpatures]

implement and
refactor

System

L

A raoees
7

L {_ Find gerects
[defect f
[no dpfect]

[no more|features]

Hubert

Example of acceptance tests

» Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario
1. Admin enters password
2. System responds true
alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use
case starts from the beginning

postcondition: Admin is logged in

Manual tests

Successful login

Prerequisit: the password for the administrator is “adminadmin”

‘ Input Step ‘ Expected Output ‘ Fail ‘ OK ‘
Startup system | “0) Exit” \/
“1) Login as administrator” ,
“1” Enter choice “password” / 4
“adminadmin” | Enter string “logged in” [Z4
Failed login

Prerequisit: the password for the administrator is “adminadmin”

‘ Input ‘ Step

Expected Output

| Fail | OK |

“1) Login as administrator”

Startup system | “0) Exit” ‘/
“1) Login as administrator” y
“17 Enter choice “password” v
“admin” | Enter string “Password incorrect” |/
“0) Exit”

Hubert

Manual vs. automated tests

Manual tests should be avoided
» Are expensive; can’t be run often
Automated tests
» Are cheap; can be run often
Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

» manual tests are immoral from 36:35
» how to test applications having a Ul from 40:00

How to do Ul tests?
— Solution: Test under the Ul

v

v

v

v

http://www.youtube.com/watch?v=hG4LH6P8Syk

Test under the Ul

User

Thin Presentation Layer ‘

’ Tests

Application Layer
e.g. LibraryApp
Business logic

Domain Layer
e.g. User, Book,

Persistency Layer

Language to express acceptance tests

Framework for integrated tests (Fit)

(A estrradingsuccessone - Mozilla
7 Eile Edit View Go Bookmarks Tools Window Help

Search
Edit
Versions

Test|

First player p1 offers the mask to p2. P2 accepts the offer and|
in return offers the books to which p1 agrees. <
fit. ActionFixture

checklinventory plmask
checklinventory p2books
actionoffer plmask p2
action/offer p2bookspl
actionclose trade pl

check successful trade|p1true
checklinventory p2mask
checklinventory 1books

Talle ="les-

[.FrontPage] [.RecentChanges]

Hubert

Fit Framework

» Framework for integrated test (Fit)

» Goal: Automated acceptance tests
» Ward Cunningham (CRC cards, Wiki, patterns, XP)
» Tests are HTML tables
— Customer formulates tests
» http://fit.c2.com
» Fitnesse
» Standalone Wiki with Fit integration
http://www.fitnesse.org
— use this to play around with Fit tests
» Download fitnesse-standalone. jar, run
java —-jar fitnesse-standalone.jar -p 8080
and go to 1ocalhost:8080
» Set the class path with !path
» Compile with
javac -cp fitnesse-standalone. jar:.

v

http://fit.c2.com
http://www.fitnesse.org
localhost:8080

Fit Framework 1l

H

Fit tables

THL

fit. ActionFixture
aclon e

check inventory plimask
check inventory p2books
actionoffer 1jmask p2|
actionoffer p2booksp1
actionclose trade 1

check successful tradejp1/true
check|inventory p2mask
i check|inventory 1books

System
Fit engine Fixtures under
test
: Hu vinto
Ta & é‘)

Ql\ue cod%

Hubert

Column fixture

eg.Division

numerator | denominator | quotient?
70 7 5)
12.6 3 42
100 4 33

public class Division extends ColumnFixture {
public double numerator;
public double denominator;
public double quotient () {
Div sut = new Div();
return sut.divide (numerator, denominator);

public class Div {

public double divide (doube numerator, double denominator) {
return numerator / denominator;
}

}

Hubert

Row fixture

fitnesse fixtures.PrimeNumberRowFixture
5 Prime >

N u[Nvw

public class PrimeNumberRowFixture extends RowFixture
public Object[] query () throws Exception {
Primes sut = new Primes();
PrimeData[] array = new PrimeData[5];
int[] primes = sut.primes (5);
for (int i = 0; 1 < 5; i++) |
PrimeData pd = new PrimeData();
d.sefPrime (primes[i]);
array[i] = pd;

}

return array;

}

public Class getTargetClass() {
return PrimeData.class;

}

Hubert

Action fixture

Action Fixture.

~=)|start | fitnesse fixtures.CountFixture

= | check | counter ‘0

~—> |press | count

| check | counter “I

=2 | press | count

~2 | check| counter 2

~3 |enter | counter \ 5
G)IQL ~— |press | count

) 7‘unter Yl \ ‘6

\L check

public class CountFixtu
private Counter sut n
public void count ()
public int counter ()
public void counter (int

public class Counter {
int counter = 0;

re

end$ Fixture
Coynter () ;

ut.colint (); }
n sut.getCounter();
c)¥{ sut.setCounter(c);

public void count () { counter++;}
{ return counter;}
publc void setCounter (int c) { counter

public int getCounter ()

{

c;}

}
}

Hubert

Action Fixture: From use case to test

» Interactions
» The user does something with the system

» press: performing one action: press a button:
e.g. press | count

» enter: performing one action with a parameter:
e.g. enter | name | Anne

» The system changes because what the user did
» check: e.g. check | counter equals | 3
» Preconditions / postconditions
» check: e.g. check | user registered | true

Travel Agency: detailed use case list available flights

name: list available flights
description: the user checks for available flights
actor: user
main scenario:
1. The user provides information about the city to travel to and
the arrival and departure dates
2. The system provides a list of available flights with prices
and booking number
alternative scenario:
1a. The input data is not correct (see below)
2. The sytem notifies the user of that fact and terminates and
starts the use case from the beginning
2a. There are no flights matching the users data

3. The use case starts from the beginning
note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

» Acceptance Tests:
http://www2.compute.dtu.dk/courses/02291/
examples/test/travel_agency_fit_tests.pdf

http://www2.compute.dtu.dk/courses/02291/examples/test/travel_agency_fit_tests.pdf
http://www2.compute.dtu.dk/courses/02291/examples/test/travel_agency_fit_tests.pdf

Testing in the system integration course

v

Learn how to write test

— Acceptance tests as tables
Check that tests and scenarios describe the same
interactions
Explain the tables and their kind (column-, row-, or action
fixtures)
Just the tables: LaTeX, Word, ...

v

v

v

	User Stories
	Activity Diagrams
	Introduction
	Basic Concepts

	Acceptance Tests
	Introduction
	Fit and Fitnesse

