
02291: System Integration
Week 3

Hubert Baumeister
huba@dtu.dk

DTU Compute
Technical University of Denmark

Spring 2018

Contents

User Stories

Activity Diagrams

Acceptance Tests

User stories

I Basic requirements documentation for agile processes
I Extreme Programming: Simplifies use cases
I ”story” the user tells about the the system
I Focus on features

I ”As a customer, I want to book and plan a single flight from
Copenhagen to Paris”.

I functional + non-functional requirement
e.g. ”The search for a flight from Copenhagen to Paris shall
take less than 5 seconds”

I user story cards: index cards

Example of user stories

Each line is one user story:

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

http://www.agilemodeling.com/artifacts/userStory.htm

Example of user story cards

”Use the simplest tool possible”
→ index cards, post-its, . . .
I electronically: e.g. Trello (trello.com)

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

trello.com
http://www.agilemodeling.com/artifacts/userStory.htm

Use the simplest tool possible

Paul Downey 2009 https://www.flickr.com/photos/psd/3731275681/in/photostream/

https://www.flickr.com/photos/psd/3731275681/in/photostream/

Two different ways of building the system

Traditional: Build the system by
layer/framework

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Agile: Build the system by user
story

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

Hubert

Two different ways of building the system

Traditional: Build the system by
layer/framework

Presentation Layer

Application Layer

Domain Layer

Database / Infrastructure Layer

Agile: Build the system by user
story

Database / Infrastructure Layer

Presentation Layer

Application Layer

Domain Layer

User
Story

User
Story

User
Story

Comparision: User Stories / Use Cases

Use Case
I Advantage: Overview over

functionality
I Disadvantage: Use case

driven development

Use Story
I Advantage: user story

driven
I Disadvantage: Overview

over the functionality is lost

Example: Login

Use case
name: Login
actor: User
main scenario

1 User logs in with
username and password

alternative scenario
1’ User logs in with NEMID

User stories
1 User logs in with

username and password
2 User logs in with NEMID

User Story Maps

Shrikant Vashishtha http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png

http://www.agilebuddha.com/wp-content/uploads/2013/02/IMAG0144.png

Combining Use Cases and User Stories

1. Use case diagram: Overview
2. Use case scenarios give user stories
3. User story driven implementation by priority

Problem: Changing Requirements

Requirements can change
I Feedback: design, implementing, using
→ clarification, changing, and new requirements
I The business case changes

Different type of software
I s-type: mathematical function, sorting: complete

specfication
I p-type: real world problems, e.g., chess: modelling the real

world
I e-type: embeded into socia-technical systems.

Requirements change as the environment changes.
System changes the environment: e.g., operating system

Requirements management: Waterfall

I Defined requirement management process
I E.g. Agreement of all stakeholders

I Changed / new requirements
I Cost of change not predictable
→ Avoid changing/new requirements if possible

Requirements management: Agile Methods

Scott Ambler 2003–2014 http://www.agilemodeling.com/artifacts/userStory.htm

I Cost of change
I New / changed requirements not done yet: zero costs
I Changed requirements already done: the cost of a

requiment that can not be implemented

http://www.agilemodeling.com/artifacts/userStory.htm

Contents

User Stories

Activity Diagrams
Introduction
Basic Concepts

Acceptance Tests

Examples of the use of Activity Diagrams
Shows main- and alternative scenarios of use cases

Input start,
destination, date for

f l ight

Returns a list
of flights with

booking number
and price

Reports an error
in the flight data

[error in input data]

[no flights found]

[else]

User Travel Agency

Business Processes

Ian Sommerville, Software Engineering – 9, 2010

Hubert

Activity Diagram Concepts

Activity Diagram Execution

Hubert

Activity Diagram Execution

Activity Diagram Execution

Activity Diagram Execution

Activity Diagram Execution

Hubert

Activity Diagram Execution

Hubert

Activity Diagram Execution

Subactivities

Deliver Order

Subactivities

Deliver Order

Hubert

Subactivity Deliver Order

Deliver Order

Swimlanes / Partitions

Objectflows / Dataflows

Hubert

Pins

Hubert

Contents

User Stories

Activity Diagrams

Acceptance Tests
Introduction
Fit and Fitnesse

Why testing?

I Validation testing
I Tests that the user requirements are satisfied
I Have we built the right system?

I Defect testing
I Tests that the system has no defects
I Have we built the system right?

I Documentation
1 System properties
2 Surprising or non-intuitive behaviour of the system
3 Bugs and bug fixes, also known as regression testing

(Prevents from reintroducing the bug later)
I Experiment with the system

Types of tests

1. Developer tests (basically validation testing)
a) Unit tests (single classes and methods)
b) Component tests (single components = cooperating

classes)
c) System tests / Integration tests (cooperating components)

2. Release tests (validation and defect testing)
a) Scenario based testing
b) Performance testing

3. User tests
a) Acceptance tests

Acceptance Tests

Traditional testing

understand
requirements

understand
requirements

System

UserDeveloper Quality Assurance (QA)

fix defects

implement

run the tests

create tests

define
system requirements

Tests

SystemRequirments

UserRequirments

define
user requirements

[no defects]

[defect found]

Hubert

Acceptance Tests in Agile processes
Test-Driven Development

understand
user story

create test

select the
feature / user story
with highest priority

System

UserDeveloper Quality Assurance (QA)

fix defects

implement and
refactor

Find defects

create test

Test

Feature / User Story

UserRequirments

define
user requirements

[more features]

[no more features]

[no defect]
[defect found]

Hubert

Example of acceptance tests

I Use case
name: Login Admin
actor: Admin
precondition: Admin is not logged in
main scenario

1. Admin enters password
2. System responds true

alternative scenarios:
1a. Admin enters wrong password
1b. The system reports that the password is wrong and the use

case starts from the beginning

postcondition: Admin is logged in

Manual tests

Successful login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Failed login

Viden som Vækstmotor Project with MSystem
Draft 01

Hubert Baumeister (huba@dtu.dk)

February 16, 2014

Contents
1 Success scenario 1

2 Fail scenario 1

1 Success scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“adminadmin” Enter string “logged in”

2 Fail scenario
Prerequisit: the password for the administrator is “adminadmin”

Input Step Expected Output Fail OK
Startup system “0) Exit”

“1) Login as administrator”
“1” Enter choice “password”
“admin” Enter string “Password incorrect”

“0) Exit”
“1) Login as administrator”

1

Hubert

Manual vs. automated tests

I Manual tests should be avoided
I Are expensive; can’t be run often

I Automated tests
I Are cheap; can be run often

I Robert Martin (Uncle Bob) in
http://www.youtube.com/watch?v=hG4LH6P8Syk

I manual tests are immoral from 36:35
I how to test applications having a UI from 40:00

I How to do UI tests?
→ Solution: Test under the UI

http://www.youtube.com/watch?v=hG4LH6P8Syk

Test under the UI

Tests
Business Logic

Domain Layer
e.g. User, Book, ...

Business logic

Persistency Layer

User

Application Layer
e.g. LibraryApp
Business logic

Thin Presentation Layer
No Business Logic

Language to express acceptance tests

Framework for integrated tests (Fit)

Hubert

Fit Framework

I Framework for integrated test (Fit)
I Goal: Automated acceptance tests
I Ward Cunningham (CRC cards, Wiki, patterns, XP)
I Tests are HTML tables
→ Customer formulates tests
I http://fit.c2.com

I Fitnesse
I Standalone Wiki with Fit integration
I http://www.fitnesse.org
→ use this to play around with Fit tests
I Download fitnesse-standalone.jar, run
java -jar fitnesse-standalone.jar -p 8080
and go to localhost:8080

I Set the class path with !path ...
I Compile with
javac -cp fitnesse-standalone.jar:. ...

http://fit.c2.com
http://www.fitnesse.org
localhost:8080

Fit Framework III

System
under
test

FixturesFit engineFit tables

G
lu

e
co

de

M
od

el
P

ro
gr

am

Hubert

Column fixture

public class Division extends ColumnFixture {
public double numerator;
public double denominator;
public double quotient() {

Div sut = new Div();
return sut.divide(numerator, denominator);

}
}

public class Div {
public double divide(doube numerator, double denominator) {

return numerator / denominator;
}

}

Hubert

Row fixture

public class PrimeNumberRowFixture extends RowFixture {
public Object[] query() throws Exception {

Primes sut = new Primes();
PrimeData[] array = new PrimeData[5];
int[] primes = sut.primes(5);
for (int i = 0; i < 5; i++) {

PrimeData pd = new PrimeData();
pd.setPrime(primes[i]);
array[i] = pd;

}
return array;

}

public Class getTargetClass() {
return PrimeData.class;

}
}

Hubert

Action fixture

public class CountFixture extends Fixture {
private Counter sut = new Counter();
public void count() { sut.count(); }
public int counter() { return sut.getCounter(); }
public void counter(int c) { sut.setCounter(c); }

}

public class Counter {
int counter = 0;
public void count() { counter++;}
public int getCounter() { return counter;}
publc void setCounter(int c) { counter = c;}

}

Hubert

Action Fixture: From use case to test

I Interactions
I The user does something with the system

I press: performing one action: press a button:
e.g. press | count

I enter : performing one action with a parameter:
e.g. enter | name | Anne

I The system changes because what the user did
I check : e.g. check | counter equals | 3

I Preconditions / postconditions
I check : e.g. check | user registered | true

Travel Agency: detailed use case list available flights
name: list available flights
description: the user checks for available flights
actor: user
main scenario:

1. The user provides information about the city to travel to and
the arrival and departure dates

2. The system provides a list of available flights with prices
and booking number

alternative scenario:
1a. The input data is not correct (see below)

2. The sytem notifies the user of that fact and terminates and
starts the use case from the beginning

2a. There are no flights matching the users data
3. The use case starts from the beginning

note: The input data is correct, if the city exists (e.g. is correctly
spelled), the arrival date and the departure date are both dates, the
arrival date is before the departure date, arrival date is 2 days in the
future, and the departure date is not more then one year in the future

I Acceptance Tests:
http://www2.compute.dtu.dk/courses/02291/
examples/test/travel_agency_fit_tests.pdf

http://www2.compute.dtu.dk/courses/02291/examples/test/travel_agency_fit_tests.pdf
http://www2.compute.dtu.dk/courses/02291/examples/test/travel_agency_fit_tests.pdf

Testing in the system integration course

I Learn how to write test
→ Acceptance tests as tables

I Check that tests and scenarios describe the same
interactions

I Explain the tables and their kind (column-, row-, or action
fixtures)

I Just the tables: LaTeX, Word, . . .

	User Stories
	Activity Diagrams
	Introduction
	Basic Concepts

	Acceptance Tests
	Introduction
	Fit and Fitnesse

