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Propositional logic is too weak

Propositional logic only deals with fixed truth values.
It cannot capture the meaning and truth of statements like:

“x + 2 is greater than 5.”

“There exists y such that y2 = 2.”

“For every real number x , if x is greater than 0, then there exists a
real number y such that y is less than 0 and y2 equals x .”

“Everybody loves Raymond”

“Every man loves a woman”
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First-order structures

A first-order structure consists of:

• A non-empty set, called a domain (of discourse) D;

• Distinguished predicates in D;

• Distinguished functions in D;

• Distinguished constants in D;
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First-order structures: some examples

• N : The set of natural numbers N with the unary successor
function s, (where s(x) = x + 1), the binary functions +
(addition) and × (multiplication), the predicates =, < and >,
and the constant 0.

• Likewise, but with the domains being the set of integers Z,
rational numbers Q, or the reals R (possibly adding more
functions) we obtain the structures Z, Q and R respectively.

• H: the domain is the set of all humans, with functions m
(‘the mother of ’), f (‘the father of ’), the unary predicates M
(‘man’), W (‘woman’), the binary predicates P (’parent of ’),
C (’child of ’), L (‘loves’), and constants (names), e.g.
‘Adam’, ’Eve’, ‘John’, ‘Mary’ etc.

• G: the domain is the set of all points and lines in the plane,
with unary predicates P for ‘point’, L for ‘line’ and the binary
predicate I for ‘incidence’ between a point and a line.
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Many-sorted first-order structures

Often the domain of discourse involves different sorts of objects,
e.g., integers and reals; scalars and vectors; man and women;
points, lines, triangles, circles; etc.

The notion of first-order structures can be extended naturally to
many-sorted structures, with cross-sort functions and predicates.

Instead, we will use unary predicates to identify the different sorts
within a universal domain.
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First-order languages: vocabulary

1. Functional, predicate, and constant symbols, used as names
for the distinguished functions, predicates and constants we
consider in the structures.
All these are referred to as non-logical symbols.

2. Individual variables: x , y , z , possibly with indices.

3. Logical symbols, including:

3.1 the Propositional connectives: ¬,∧,∨,→,↔
(or a sufficient subset of these);

3.2 Equality = (optional);
3.3 Quantifiers:

B the universal quantifier ∀
(‘all’, ‘for all’, ‘every’, ‘for every ’),
B the existential quantifier ∃
(‘there exists’, ‘there is’, ‘some’,‘for some’, ‘a’).

3.4 Auxiliary symbols, such as ( , ) etc.
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First-order languages: terms

Inductive definition of the set of terms TM(L) of a first-order
language L:

1. Every constant symbol in L is a term.

2. Every individual variable in L is a term.

3. If t1, ..., tn are terms and f is an n -ary functional symbol in
L, then f (t1, ..., tn) is a term in L.

Construction/parsing tree of a term.
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Examples of terms

1. In the language LN : x , s(x), 0, s(0), s(s(0)), etc.
We denote the term s(...s(0)...), where s occurs n times, by n.

More examples of terms in LN :

• +(2, 2), which in a more familiar notation is written as 2 + 2
• 3×y (written in the usual notation)
• (x2 + x)− 5, where x2 is an abbreviation of x × x
• x1 + s((y2 + 3)×s(z)), etc.

2. In the ‘human’ language LH:

• x
• Mary
• m(John) (‘the mother of John’)
• f(m(y)) (‘the father of the mother of x ’), etc.
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First-order languages: atomic formulae

If t1, ..., tn are terms in a language L and p is an n-ary predicate
symbol in L, then p(t1, ..., tn) is an atomic formula in L.

Examples:

1. In LN :

• < (1, 2), or in traditional notation: 1 < 2;
• x = 2,
• 5 < (x + 4),
• 2 + s(x1) = s(s(x2)),
• (x2 + x)− 5 > 0,
• x × (y + z) = x × y + x × z , etc.

2. In LH:

• x = m(Mary) (‘x is the mother of Mary’).
• L(f(y), y) (‘The father of y loves y ’), etc.
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First-order languages: formulae

Inductive definition of the set of formulae FOR(L):

1. Every atomic formula in L is a formula in L.

2. If A is a formula in L then ¬A is a formula in L.

3. If A, B are formulae in L then
(A ∨ B), (A ∧ B), (A→ B), (A↔ B) are formulae in L.

4. If A is a formula in L and x is a variable, then ∀xA and ∃xA
are formulae in L.

Construction/parsing tree of a formula, subformulae, main
connectives: like in propositional logic.
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Examples of formulae

1. In LZ :

• (5 < x ∧ x2 + x − 2 = 0),

• ∃x(5 < x ∧ x2 + x − 2 = 0),

• ∀x(5 < x ∧ x2 + x − 2 = 0),

• (∃y(x = y2)→ (¬x < 0)),

• ∀x((∃y(x = y2)→ (¬x < 0)), etc.

2. In LH:

• John = f(Mary)→ ∃xL(x , Mary);

• ∃x∀z(¬L(z , y)→ L(x , z)),

• ∀y((x = m(y))→ (C(y , x) ∧ ∃zL(x , z))).
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Some conventions

Priority order on the logical connectives:

• the unary connectives: negation and quantifiers have the
strongest binding power, i.e. the highest priority,

• then come the conjunction and disjunction,

• then the implication, and

• the biconditional has the lowest priority.

Example:

∀x(∃y(x = y2)→ (¬(x < 0) ∨ (x = 0)))

can be simplified to

∀x(∃y x = y2 → ¬x < 0 ∨ x = 0).

On the other hand, for easier readability, extra parentheses can be
optionally put around subformulae.
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First-order instances of propositional formulae

Definition: Any uniform substitution of first-order formulae for the
propositional variables in a propositional formula A produces a
first-order formula, called a first-order instance of A.

Example:
Take the propositional formula

A = (p ∧ ¬q)→ (q ∨ p).

The uniform substitution of (5 < x) for p and ∃y(x = y2) for q in
A results in the first-order instance

((5 < x) ∧ ¬∃y(x = y2))→ (∃y(x = y2) ∨ (5 < x)).
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Unique readability of terms and formulae

Let L be an arbitrarily fixed first-order language.

Every occurrence of a functional symbol in a term from TM(L) is
the beginning of a unique subterm.

Therefore:

The set of terms TM(L) has the unique readability property.

Every occurrence of a predicate symbol, ¬, ∃, or ∀ in a formula A
from FOR(L) is the beginning of a unique subformula of A.

Therefore:

The set of formulae FOR(L) has the unique readability property.
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Semantics of first-order logic informally

The semantics of a first-order language L is a precise description
of the meaning of terms of formulae in L.

It is given by interpreting these into a given first-order structure S
for which we want to use the language L to talk about.

Then, terms of formulae of L are translated into natural language
expressions describing elements (for terms) or making statements
(for formulae) in S.

We will first discuss semantics of first-order languages informally,
and later will define it formally.
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Translation from first-order logic to natural language:
examples in the structure of real numbers R

∃x(x < x × y)

“Some real number is less than its product with y.”

∀x(x < 0→ x3 < 0)

“Every negative real number has a negative cube.”

∀x∀y(xy > 0→ (x > 0 ∨ y > 0)).

“If the product of two real numbers is positive, then at least one
of them is positive.”

∀x(x > 0→ ∃y(y2 = x))

“Every positive real number is a square of a real number.”
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Translation from first-order logic to natural language:
examples in the structure of humans H

Elisabeth = m(Charles)→ ∃xL(x , Charles)

“If Elisabeth is the mother of Charles then someone loves
Charles.”

∃x∀z(¬L(z , y)→ L(x , z))

“There is someone who loves everyone who does not love y.”

∀x∃yL(x , y) ∧ ¬∃x∀yL(x , y)

“Everyone loves someone and noone loves everyone.”

∀x(∃y(y = m(x)) ∧ ∃y(y = f(x)))

“Everybody has a mother and a father.”
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Translation from natural languages to first-order logic:
examples in the structure of real numbers R

There is a real number greater than 2 and less than 3.”

∃x(x > 2 ∧ x < 3).

There is an integer greater than 2 and less than 3.”

∃x(I (x) ∧ x > 2 ∧ x < 3).

where I (x) is interpreted as ‘x is an integer.

There is no real number the square of which equals −1.”
It actually says “It is not true that there is a real number the
square of which equals −1.”
How about

∃x(¬x2 = −1)?

No! The correct translation is

¬∃x(x2 = −1).
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Translation from natural languages to first-order logic:
examples in the structure of humans H

Translate to first-order logic “Every man loves a woman.”

∀x∃yL(x , y)?

No! This means ‘Everybody loves somebody.’.

We must restrict the quantification of x to men, and of y
respectively to women.

For that purpose we transform the sentence to:

“For every human, if he is a man, then there is a human who is a
woman and the man loves that woman.”

Now the translation into LH is immediate:

∀x(M(x)→ ∃y(W(y) ∧ L(x , y))).

Now, translate “Every mother has a child whom she loves.”

∀x(∃y(x = m(y))→ ∃z(C(z , x) ∧ L(x , z))).
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Restricted quantification

To quantify only over those elements of the domain that satisfy a
given (definable) property P, we use restricted quantification.

• For existential restricted quantification we use the template:

∃x(P(x) ∧ . . .)

• For universal restricted quantification we use the template:

∀x(P(x)→ . . .)

For instance:
∃x(x > 0 ∧ x2 + x < 5)

interpreted in R, says that there exists a real number x which is
positive and which satisfies x2 + x < 5.

Likewise,
∀x(x > 0→ x2 + x < 5)

interpreted in R says that all real numbers x which are positive
satisfy x2 + x < 5.
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Semantics of first-order languages formally:
interpretations

An interpretation of a first-order language L is any structure S for
which L is a ‘matching’ language. For instance:

• the structure N is an interpretation of the language LN .
It is the intended, or standard interpretation of LN .

• Likewise, the structure H is the standard interpretation of the
language LH.

There are many other, natural or ‘unnatural’ interpretations.

• For instance, we can interpret LN in other numerical
structures extending N , such as Z, Q, R by extending
naturally the arithmetic predicates and operations.

• We can also interpret the non-logical symbols in LN
arbitrarily in the set N, or even in non-numerical domains,
such as the set of humans H.
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Variable assignments and evaluations of terms

Given an interpretation S of a first-order language L, a variable
assignment in S is any mapping v : VAR → |S| from the set of
variables VAR to the domain of S.

Due to the unique readability of terms, every variable assignment
v : VAR → |S| in a structure S can be uniquely extended to a
mapping vS : TM(L)→ |S|, called term evaluation, such that for
every n-tuple of terms t1, . . . , tn and an n-ary functional symbol f :

vS(f (t1, . . . , tn)) = f S(vS(t1), . . . , vS(tn))

where f S is the interpretation of f in S.

Intuitively, once a variable assignment v in the structure S is fixed,
every term t in TM(L) can be evaluated into an element of S,
which we denote by vS(t) (or, just v(t) when S is fixed) and call
the value of the term t under the variable assignment v .

Important observation: the value of a term only depends on the
assignment of values to the variables occurring in that term.
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Evaluations of terms: examples

If v is a variable assignment in the structure N
such that v(x) = 3 and v(y) = 5 then:

vN (s(s(x)× y))
= sN (vN (s(x)× y))
= sN (vN (s(x))×N vN (y))
= sN (sN (vN (x))×N vN (y))
= sN (sN (3)×N 5)
= sN ((3 + 1)×N 5)
= ((3 + 1)× 5) + 1
= 21.

Likewise, vN (1 + (x × s(s(2)))) = 13.

If v(x) =‘Mary’ then vH(f(m(x))) = ‘the father of the mother of
Mary’.
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Truth of first-order formulae:
the case of atomic formulae

We will define the notion of a formula A to be true in a structure
S under a variable assignment v , denoted

S, v |= A,

compositionally on the structure of the formula A,
beginning with the case when A is an atomic formula.

Given an interpretation S of L and a variable assignment v in S,
we can compute the truth value of an atomic formula p(t1, . . . , tn)
according to the interpretation of the predicate symbol pS in S,
applied to the tuple of arguments vS(t1), . . . , vS(tn), i.e.

S, v |= p(t1, . . . , tn) iff pS holds (is true) for vS(t1), . . . , vS(tn).
Otherwise, we write S, v 6|= p(t1, . . . , tn).
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Truth of atomic formulae: examples

If the binary predicate L is interpreted in N as <, and the variable
assignment v is such that v(x) = 3 and v(y) = 5, we find that:

N , v |= L(1 + (x × s(s(2))), s(s(x)× y))

iff LN ((1 + (x × s(s(2))))N , (s(s(x)× y))N )

iff 13 < 21, which is true.

Likewise, N , v |= 8× (x + s(s(y))) = (s(x) + y)× (x + s(y))

iff (8× (x + s(s(y))))N = ((s(x) + y)× (x + s(y)))N

iff 80 = 81, which is false.
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Truth of first-order formulae
the propositional cases

The truth values propagate over the propositional connectives
according to their truth tables, as in propositional logic:

• S, v |= ¬A iff S, v 6|= A.

• S, v |= (A ∧ B) iff S, v |= A and S, v |= B;

• S, v |= (A ∨ B) iff S, v |= A or S, v |= B;

• S, v |= (A→ B) iff S, v 6|= A or S, v |= B;

• and likewise for (A↔ B).
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Truth of first-order formulae:
the quantifier cases

The truth of formulae ∀xA(x) and ∃xA(x) is computed according
to the meaning of the quantifiers and the truth A:

S, v |= ∃xA(x)
if there exists an object a ∈ S such that S, v [x := a] |= A(x),
where the assignment v [x := a] is obtained from v by re-defining
v(x) to be a.

Likewise,
S, v |= ∀xA(x) if S, v [x := a] |= A(x) for every a ∈ S.

If S, v |= A we also say that the formula A is satisfied by the
assignment v in the structure S.
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Scope of a quantifier. Free and bound variables

Two different uses of variables in first-order formulae:

1. Free variables: used to denote unknown or unspecified objects,
as in (x > 5) ∨ (x2 + x − 2 = 0).

2. Bound variables: used to quantify, as in
∃x(x2 + x − 2 = 0) and ∀x(x > 5→ x2 + x − 2 > 0).

Scope of (an occurrence of) a quantifier in a formula A: the unique
subformula QxB beginning with that occurrence of the quantifier.

An occurrence of a variable x in a formula A is bound if it is in the
scope of some occurrence of a quantifier Qx in A. Otherwise, that
occurrence of x is free. A variable is free (bound) in a formula, if it
has a free (bound) occurrence in it. For instance, in the formula

A = (x > 5)→ ∀y(y < 5→ (y < x ∧ ∃x(x < 3))).

the first two occurrences of x are free, while all other occurrences
of variables are bound. Thus, the only free variable in A is x , while
both x and y are bound in A.
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Truth of a formula does not depend on its bound variables

Important fact: The truth of a formula in a given structure
under given assignment only depends on the assignment of values
to the free variables occurring in that formula.

That is, if v1, v2 are variable assignments in S such that
v1 |FV (A)= v2 |FV (A), where FV (A) is the set of free variables in A,
then

S, v1 |= A iff S, v2 |= A.
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Truth of first-order formulae: examples

Consider the structure N and a variable assignment v such that
v(x) = 0, v(y) = 1, v(z) = 2. Then:

• N , v |= ¬(x > y).

• However: N , v |= ∃x(x > y).

• In fact, the above holds for any value assignment of y , and
therefore N , v |= ∀y∃x(x > y).

• On the other hand, N , v |= ∃x(x < y),
but N , v 6|= ∀y∃x(x < y). Why?

• What about N , v |= ∃x(x > y ∧ z > x)? This is false.

• However, for the same variable assignment in the structure of
rationals, Q, v |= ∃x(x > y ∧ z > x).
Does this hold for every variable assignment in Q?
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Truth of sentences in structures.
Models and countermodels.

Recall that a sentence is a formula with no free variables.

The truth of a sentence in a given structure does not depend on
the variable assignment.

Therefore, for a structure S and sentence A we can simply write
S |= A if S, v |= A for any/every variable assignment v .

We then say that S is a model of A and that A is true in S, or
that A is satisfied by S.

Otherwise we write S 6|= A and say that S is a counter-model for A.

For instance: N is a model of the sentences
∀x∃y(x < y) and ∀x∀y(x + y = y + x),
but is a counter-model of the sentence ∀x∃y(y < x).
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Truth of first-order sentences: more examples

The sentence ∀x(x = x) is true for any x in any domain of
discourse, because of the meaning of the equality symbol =.

The sentence ∃x(3x = 1) is true in the structure of rational
numbers, but false in the structure of integers.

In the structure of real numbers R:

• ∃x(x = x2) is true, take x = 0.

• ∀x(x < 0→ x3 < 0) is true.

• ∀x∀y(xy > 0→ (x > 0 ∨ y > 0)) is false:
take e.g., x = y = −1.

• ∀x(x > 0→ ∃y(y2 = x)) is true.

• ∃x∀y(xy < 0→ y = 0) is true or false?


