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Propositional logic is too weak

Propositional logic only deals with fixed truth values.
It cannot capture the meaning and truth of statements like:

“x + 2 is greater than 5."

“There exists y such that y? = 2.

“For every real number x, if x is greater than 0, then there exists a

real number y such that y is less than 0 and y? equals x.”
“Everybody loves Raymond”

“Every man loves a woman”
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First-order structures

A first-order structure consists of:

A non-empty set, called a domain (of discourse) D;
Distinguished predicates in D;
Distinguished functions in D;

Distinguished constants in D;
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First-order structures: some examples

e N: The set of natural numbers N with the unary successor
function s, (where s(x) = x 4 1), the binary functions +
(addition) and x (multiplication), the predicates =, < and >,
and the constant 0.

o Likewise, but with the domains being the set of integers Z,
rational numbers Q, or the reals R (possibly adding more
functions) we obtain the structures Z, Q and R respectively.

e H: the domain is the set of all humans, with functions m
(‘the mother of "), f ('the father of'), the unary predicates M
(‘man’), W (‘woman’), the binary predicates P ('parent of '),
C ("child of "), L (‘loves’), and constants (names), e.g.
‘Adam’, 'Eve’, ‘John’, ‘Mary’ etc.

e G: the domain is the set of all points and lines in the plane,
with unary predicates P for ‘point’, L for ‘line’ and the binary
predicate | for ‘incidence’ between a point and a line. V Goranko
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Many-sorted first-order structures

Often the domain of discourse involves different sorts of objects,
e.g., integers and reals; scalars and vectors; man and women;
points, lines, triangles, circles; etc.

The notion of first-order structures can be extended naturally to
many-sorted structures, with cross-sort functions and predicates.

Instead, we will use unary predicates to identify the different sorts
within a universal domain.
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First-order languages: vocabulary

1. Functional, predicate, and constant symbols, used as names
for the distinguished functions, predicates and constants we
consider in the structures.

All these are referred to as non-logical symbols.

2. Individual variables: x,y, z, possibly with indices.
3. Logical symbols, including:

3.1 the Propositional connectives: =, A,V, —, <>
(or a sufficient subset of these);
3.2 Equality = (optional);
3.3 Quantifiers:
> the universal quantifier V
(‘all’, ‘for all’, ‘every’, ‘for every '),
> the existential quantifier 3
(‘there exists’, ‘there is’, ‘some’, ‘for some’, ‘a’).
3.4 Auxiliary symbols, such as (, ) etc.
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First-order languages: terms

Inductive definition of the set of terms TM(L) of a first-order
language L:

1. Every constant symbol in L is a term.
2. Every individual variable in L is a term.

3. Ift1,...,ty are terms and f is an n -ary functional symbol in
L, then f(ti,...,ty) is a term in L.

Construction/parsing tree of a term.
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Examples of terms

1. In the language Ly : x, s(x), 0, s(0), s(s(0)), etc.
We denote the term s(...s(0)...), where s occurs n times, by n.

More examples of terms in Lys:

+(2,2), which in a more familiar notation is written as 2 + 2
3xy (written in the usual notation)

(x? + x) — 5, where x? is an abbreviation of x x x

x1+ s((y2 + 3)xs(z)), etc.

2. In the ‘human’ language L:

® X

e Mary

e m(John) (‘the mother of John")

e f(m(y)) (‘the father of the mother of x'), etc.
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First-order languages: atomic formulae

If t1,..., t, are terms in a language L and p is an n-ary predicate

symbol in L, then p(ti, ..., t,) is an atomic formula in L.

Examples:
1. In Ly

e < (1,2), or in traditional notation: 1 < 2;
o x =2,
e 5 < (x+4),
o 24 5(x1) = s(s(x2)),
e (x2+x)-5>0,
e xX(y+z)=xxy+xxz, etc.

2. In Loy

e x = m(Mary) (‘x is the mother of Mary').
o L(f(y),y) (‘The father of y loves y'), etc.

V Goranko
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First-order languages: formulae

Inductive definition of the set of formulae FOR(L):

1. Every atomic formula in L is a formula in L.
2. If Ais a formula in L then —=A is a formula in L.

3. If A, B are formulae in L then
(AV B),(AAB),(A— B),(A < B) are formulae in L.

4. If Ais a formula in L and x is a variable, then VxA and 3xA
are formulae in L.

Construction/parsing tree of a formula, subformulae, main
connectives: like in propositional logic.
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Examples of formulae

1. In Lz:

e 5<xAX>+x—-2=0),

Ix(5 < x Ax?+x—2=0),

Vx(5 < x Ax?+x—2=0),

@y(x=y?) = (-x <0)),
Vx((3y(x = y?) — (—x < 0)), etc.

2. In ﬁHZ
e John = f(Mary) — 3xL(x, Mary);
e IxVz(—L(z,y) — L(x, 2)),
o Vy((x =m(y)) — (C(y, x) A FzL(x, 2))). E]_y
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Some conventions

Priority order on the logical connectives:

e the unary connectives: negation and quantifiers have the
strongest binding power, i.e. the highest priority,

e then come the conjunction and disjunction,
e then the implication, and
e the biconditional has the lowest priority.
Example:
Wx(3y(x = y?) = (<(x <0) V (x = 0)))
can be simplified to
Vx(Fy x =y? — -x <0V x =0).

On the other hand, for easier readability, extra parentheses can be 01U
optionally put around subformulae. V Goranko =



First-order instances of propositional formulae

Definition: Any uniform substitution of first-order formulae for the
propositional variables in a propositional formula A produces a
first-order formula, called a first-order instance of A.

Example:
Take the propositional formula

A=(pA=q)—(qVp).

The uniform substitution of (5 < x) for p and Jy(x = y?) for q in
A results in the first-order instance

((5 <x) A=3Fy(x =y?) — By(x = y*) V(5 < x)).

V Goranko
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Unique readability of terms and formulae

Let £ be an arbitrarily fixed first-order language.

Every occurrence of a functional symbol in a term from TM(L) is
the beginning of a unique subterm.

Therefore:
The set of terms TM(L) has the unique readability property.

Every occurrence of a predicate symbol, —,3, or V in a formula A
from FOR(L) is the beginning of a unique subformula of A.

Therefore:

The set of formulae FOR(L) has the unique readability property.
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Semantics of first-order logic informally

The semantics of a first-order language L is a precise description
of the meaning of terms of formulae in L.

It is given by interpreting these into a given first-order structure S
for which we want to use the language £ to talk about.

Then, terms of formulae of £ are translated into natural language
expressions describing elements (for terms) or making statements
(for formulae) in S.

We will first discuss semantics of first-order languages informally,
and later will define it formally.
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Translation from first-order logic to natural language:
examples in the structure of real numbers R

Ix(x < x X y)

“Some real number is less than its product with y."

Vx(x < 0 — x* < 0)

“Every negative real number has a negative cube.”

VxVy(xy >0 — (x >0V y >0)).

“If the product of two real numbers is positive, then at least one
of them is positive."

Vx(x > 0 — Jy(y? = x))
]
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“Every positive real number is a square of a real number." S
oranko



Translation from first-order logic to natural language:
examples in the structure of humans 'H

Elisabeth = m(Charles) — 3xL(x, Charles)

“If Elisabeth is the mother of Charles then someone loves
Charles.”

IxVz(-L(z,y) — L(x, 2))

“There is someone who loves everyone who does not love y."

Vx3yL(x,y) A =3IxVyL(x,y)

“Everyone loves someone and noone loves everyone.”

Vx(Fy(y = m(x)) A Jy(y = f(x)))
“Everybody has a mother and a father.”
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Translation from natural languages to first-order logic:
examples in the structure of real numbers R
There is a real number greater than 2 and less than 3."
Ix(x >2Ax < 3).
There is an integer greater than 2 and less than 3."
Ix(I(x) A x >2Ax<3).
where /(x) is interpreted as ‘x is an integer.

There is no real number the square of which equals —1."
It actually says “It is not true that there is a real number the
square of which equals —1."

How about

Ix(—x? = —1)?
No! The correct translation is

—-3x(x? = —1).

V Goranko
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Translation from natural languages to first-order logic:

examples in the structure of humans H
Translate to first-order logic “Every man loves a woman."
Vx3JyL(x,y)?
No! This means ‘Everybody loves somebody.’.

We must restrict the quantification of x to men, and of y
respectively to women.

For that purpose we transform the sentence to:

“For every human, if he is a man, then there is a human who is a

woman and the man loves that woman."”
Now the translation into £ is immediate:
Wx(M(x) — 3y(W(y) A L(x, ¥)))-
Now, translate “Every mother has a child whom she loves.”

Vx(Jy(x = m(y)) — 3z(C(z, x) A L(x, 2))).

V Goranko
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Restricted quantification

To quantify only over those elements of the domain that satisfy a
given (definable) property P, we use restricted quantification.
e For existential restricted quantification we use the template:
Ax(P(x)A...)
e For universal restricted quantification we use the template:
Vx(P(x) — ...)
For instance:
Ix(x > 0AX* 4 x < 5)

interpreted in R, says that there exists a real number x which is
positive and which satisfies x? + x < 5.

Likewise,
Vx(x >0 — x2 + x < 5)

interpreted in R says that all real numbers x which are positive

satisfy x2 + x < 5. V Goranko
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Semantics of first-order languages formally:

Interpretations
An interpretation of a first-order language L is any structure S for
which £ is a ‘matching’ language. For instance:

e the structure N\ is an interpretation of the language Ly .
It is the intended, or standard interpretation of Lys.

o Likewise, the structure H is the standard interpretation of the
language L.

There are many other, natural or ‘unnatural’ interpretations.

e For instance, we can interpret Ls in other numerical
structures extending AV, such as Z, Q, R by extending
naturally the arithmetic predicates and operations.

e We can also interpret the non-logical symbols in Lxs
arbitrarily in the set N, or even in non-numerical domains,
such as the set of humans H. V Goranko
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Variable assignments and evaluations of terms

Given an interpretation S of a first-order language £, a variable
assignment in S is any mapping v : VAR — |S| from the set of
variables VAR to the domain of S.

Due to the unique readability of terms, every variable assignment
v: VAR — |S| in a structure S can be uniquely extended to a
mapping vS : TM(L) — |S|, called term evaluation, such that for
every n-tuple of terms ti,...,t, and an n-ary functional symbol f:

S(F(t - ta)) = FS(t), v (2))
where f° is the interpretation of f in S.

Intuitively, once a variable assignment v in the structure S is fixed,
every term t in TM(L) can be evaluated into an element of S,
which we denote by v(t) (or, just v(t) when S is fixed) and call
the value of the term t under the variable assignment v.

Important observation: the value of a term only depends on the iy
assignment of values to the variables occurring in that term. VSeao 3=



Evaluations of terms: examples

If v is a variable assignment in the structure N/
such that v(x) = 3 and v(y) =5 then:

Likewise, vV (1 + (x x s(s(2)))) = 13.

If v(x) ='Mary' then v’(f(m(x))) = ‘the father of the mother of

Mary'.
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ko



Truth of first-order formulae:
the case of atomic formulae

We will define the notion of a formula A to be true in a structure
S under a variable assignment v, denoted

S,v EA,

compositionally on the structure of the formula A,
beginning with the case when A is an atomic formula.

Given an interpretation S of £ and a variable assignment v in S,
we can compute the truth value of an atomic formula p(ti, ..., t,)
according to the interpretation of the predicate symbol p® in S,
applied to the tuple of arguments vS(t1),...,vS(t,), i.e.

S,v = p(ty, ..., t,) iff p° holds (is true) for vo(t1), ..., vo(t,).
Otherwise, we write S, v = p(t1, ..., ts).
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Truth of atomic formulae: examples

If the binary predicate L is interpreted in N as <, and the variable
assignment v is such that v(x) = 3 and v(y) = 5, we find that:

N.vE LR+ (x x 5(s(2))), s(s(x) x y))
iff LM ((1 4 (x x s(s(2))), (s(s(x) x y))Y)
iff 13 < 21, which is true.

Likewise, N/, v = 8 x (x + s(s(y))) = (s(x) + y) x (x + s(y))

iff (8 x (x + s(s()))V = ((s(x) +y) x (x +s(y)V
iff 80 = 81, which is false.
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Truth of first-order formulae
the propositional cases

The truth values propagate over the propositional connectives
according to their truth tables, as in propositional logic:

o S,vEAIff S v £ A
S,vE(AANB)iffS,viEAand S,v = B;
S,vE(AVB)iff S,viEAorS,v = B;
S,;vE(A—=B)iffS,viEAorS,v EB;
and likewise for (A < B).
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Truth of first-order formulae:
the quantifier cases

The truth of formulae VxA(x) and 3xA(x) is computed according
to the meaning of the quantifiers and the truth A:

S, v | IXA(x)

if there exists an object a € S such that S, v[x := a] = A(x),
where the assignment v[x := a] is obtained from v by re-defining
v(x) to be a.

Likewise,
S,v = VxA(x) if S, v[x := a] = A(x) for every a € S.

If S, v = A we also say that the formula A is satisfied by the
assignment v in the structure S.
ET!
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Scope of a quantifier. Free and bound variables

Two different uses of variables in first-order formulae:

1. Free variables: used to denote unknown or unspecified objects,
asin (x >5)V (x> +x—-2=0).
2. Bound variables: used to quantify, as in
Ix(x®> +x—2=0) and ¥x(x > 5 — x>+ x — 2> 0).
Scope of (an occurrence of ) a quantifier in a formula A: the unique
subformula @xB beginning with that occurrence of the quantifier.

An occurrence of a variable x in a formula A is bound if it is in the
scope of some occurrence of a quantifier @x in A. Otherwise, that
occurrence of x is free. A variable is free (bound) in a formula, if it
has a free (bound) occurrence in it. For instance, in the formula

A=(x>5)—=Vy(y <5 —(y <xA3Ix(x <3))).

the first two occurrences of x are free, while all other occurrences
of variables are bound. Thus, the only free variable in A is x, while

both x and y are bound in A. V Goranko
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Truth of a formula does not depend on its bound variables

IMPORTANT FACT: The truth of a formula in a given structure
under given assignment only depends on the assignment of values
to the free variables occurring in that formula.

That is, if vi, v» are variable assignments in S such that
v [Fv(a)= v2 |Fv(a), where FV/(A) is the set of free variables in A,
then

S,vi EAIffS,va E A
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Truth of first-order formulae: examples

Consider the structure N and a variable assignment v such that
v(x) =0, v(y) =1, v(z) =2. Then:

e N,vE—(x>y).

However: N, v |= 3x(x > y).

In fact, the above holds for any value assignment of y, and
therefore NV, v |= Vydx(x > y).

On the other hand, NV, v |= 3x(x < y),
but NV, v (£ Vydx(x < y). Why?

What about NV, v |= Ix(x > y A z > x)? This is false.

However, for the same variable assignment in the structure of
rationals, O, v = Ix(x > y A z > x).
Does this hold for every variable assignment in Q7

V Goranko
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Truth of sentences in structures.
Models and countermodels.

Recall that a sentence is a formula with no free variables.

The truth of a sentence in a given structure does not depend on
the variable assignment.

Therefore, for a structure S and sentence A we can simply write
S| Aif S,v = A for any/every variable assignment v.

We then say that S is a model of A and that A is true in S, or
that A is satisfied by S.

Otherwise we write S [~ A and say that S is a counter-model for A.

For instance: N\ is a model of the sentences
Vx3Jy(x < y) and VxVy(x +y =y + x),
but is a counter-model of the sentence Vx3dy(y < x).

V Goranko
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Truth of first-order sentences: more examples

The sentence Vx(x = x) is true for any x in any domain of
discourse, because of the meaning of the equality symbol =.

The sentence Ix(3x = 1) is true in the structure of rational
numbers, but false in the structure of integers.

In the structure of real numbers R:
e Ix(x = x?) is true, take x = 0.

Vx(x < 0 — x3 < 0) is true.

VxVy(xy >0 — (x >0V y >0)) is false:
takeeg., x =y = —1.

Vx(x > 0 — Jy(y? = x)) is true.

IxVy(xy <0 — y = 0) is true or false?
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