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Satisfiability and validity of sentences

A sentence A is:

• satisfiable if S |= A for some structure S;

• (logically) valid, denoted |= A, if S |= A for every structure S;

• falsifiable, if it is not logically valid, i.e. if it has a
counter-model.
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Satisfiability and validity of any first-order formulae
A first-order formula A is:

• A is satisfiable if S, v |= A for some structure S and some
variable assignment v in S.

• (logically) valid, denoted |= A, if S, v |= A for every structure
S and every variable assignment v in S.

• falsifiable, if it is not logically valid.

Let A = A(x1, . . . , xn) be any first-order formula all free variables
in which are amongst x1, . . . , xn.

The sentence ∃x1 . . . ∃xnA(x1, . . . , xn) is a existential closure of A;
the sentence ∀x1 . . . ∀xnA(x1, . . . , xn) is a universal closure of A.

Claim:

• A(x1, . . . , xn) is satisfiable iff ∃x1 . . . ∃xnA(x1, . . . , xn) is
satisfiable.

• |= A(x1, . . . , xn) iff |= ∀x1 . . . ∀xnA(x1, . . . , xn).
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First-order instances of propositional formulae

Any uniform substitution of first-order formulae for the
propositional variables in a propositional formula A produces a
first-order formula, called a first-order instance of A.

Example: take the propositional formula

A = (p ∧ ¬q)→ (q ∨ p).

The uniform substitution of (5 < x) for p and ∃y(x = y2) for q in
A results in the first-order instance

((5 < x) ∧ ¬∃y(x = y2))→ (∃y(x = y2) ∨ (5 < x)).

Note, that every first-order instance of a tautology is logically valid.
Thus, for instance,

|= ¬¬(x > 0)→ (x > 0)

and
|= P(x) ∨ ¬P(x).
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Satisfiability and validity of sentences: examples

• ∃xP(x) is satisfiable: a model is, for instance, the structure of
integers Z, where P(x) is interpreted as x + x = x .

• However, that sentence is not valid: a counter-model is, any
structure A, where P(x) is interpreted as the empty set.

• The sentence ∀x(P(x) ∨ ¬P(x)) is valid.

• The sentence ∀xP(x) ∨ ∀x¬P(x) is not valid, but is
satisfiable. Find a model and a countermodel!

• The sentence ∃x(P(x) ∧ ¬P(x)) is not satisfiable. Why?

• The sentence ∃x∀yP(x , y)→ ∀y∃xP(x , y) is valid.

• However, the sentence ∀y∃xP(x , y)→ ∃x∀yP(x , y)
is not valid. Find a countermodel!



V Goranko

Logical consequence in first order logic

We fix an arbitrary first-order language L.

Given a set of L-formulae Γ, an L-structure S, and a variable
assignment v in S, we write

S, v |= Γ

to say that S, v |= A for every A ∈ Γ.

A formula A follows logically from a set of formulae Γ, denoted

Γ |= A,

if for every structure S and a variable assignment v : VAR→S:

S, v |= Γ implies S, v |= A.

Note that ∅ |= A iff |= A.
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Logical consequence: examples

• If A1, . . . ,An, B are prop. formulae such that A1, . . . ,An |= B,
and A′

1, . . . ,A
′
n, B

′ are first-order instances of A1, . . . ,An, B
obtained by the same substitution, then A′

1, . . . ,A
′
n |= B ′.

For example: ∃xA, ∃xA→ ∀yB |= ∀yB.

• ∀xP(x), ∀x(P(x)→ Q(x)) |= ∀xQ(x).

Note that this is not an instance of a propositional logical
consequence.

• ∃xP(x) ∧ ∃xQ(x) 6|= ∃x(P(x) ∧ Q(x)).

Indeed, the structure N ′ obtained from N where P(x) is
interpreted as ‘x is even’ and Q(x) is interpreted as ‘x is odd’
is a counter-model:

N ′ |= ∃xP(x) ∧ ∃xQ(x), while N ′ 6|= ∃x(P(x) ∧ Q(x)).
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Logical consequence: some basic properties

Logical equivalence in first-order logic satisfies all basic properties
of propositional logical consequence.

In particular, the following are equivalent:

1. A1, . . . ,An |= B.

2. A1 ∧ · · · ∧ An |= B.

3. |= A1 ∧ · · · ∧ An → B.

4. |= A1 → (A2 → · · · (An → B) . . .).

Furthermore, for any first-order formula A and a term t that is free
for substitution for x in A:

1. ∀xA |= A[t/x ].

2. A[t/x ] |= ∃xA.
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First-order logical consequence:
more basic properties

1. If A1, . . . ,An |= B then ∀xA1, . . . ,∀xAn |= ∀xB.

2. If A1, . . . ,An |= B and x does not occur free in A1, . . . ,An

then A1, . . . ,An |= ∀xB.

3. If A1, . . . ,An |= B and A1, . . . ,An are sentences,
then A1, . . . ,An |= ∀xB, and hence
A1, . . . ,An |= B, where B is any universal closure of B.

4. If A1, . . . ,An |= B[c/x ],
where c is a constant symbol not occurring in A1, . . . ,An,
then A1, . . . ,An |= ∀xB(x).

5. If A1, . . . ,An, A[c/x ] |= B, where
c is a constant symbol not occurring in A1, . . . ,An, A, or B,
then A1, . . . ,An, ∃xA |= B.
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Testing logical consequence with deductive systems
First-order logical consequence can be established using deductive
systems for first-order logic.

In particular, extensions of the Propositional Semantic Tableau and
Natural Deduction, with additional rules for the quantifiers, can be
constructed that are sound and complete for first-order logic.
Likewise, the method of Resolution can be extended to a sound
and complete deduction system for first-order logic.

Unlike the propositional case, none of these methods is guaranteed
to terminate its search for a derivation, even if such a derivation
exists. This happens, for instance, when a first-order logical
consequence fails, but the countermodel must be infinite.

In fact, it was proved by Alonso Church in 1936 that the problem
whether a given first-order sentence is valid (and consequently, if a
given logical consequence holds) is not algorithmically solvable.

Therefore, no sound, complete, and always terminating deductive
system for first order logic can be designed.


