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A b s t r a c t :  In this paper, we apply Propositional Temporal Logic (PTL) to the specifica- 

tion and synthesis of the synchronization part of communicating processes. To specify 

a process, we give a PTL formula that describes its sequence of communications. The 

synthesis is done by constructing a model of the given specifications using a tableau-like 

satisfiability algorithm for PTL.  This model can then be interpreted as a program. 

1. I n t r o d u c t i o n  

Most concurrent programs can easily be separated into two parts: a synchronization 
part that enforces the necessary constraints on the relative timing of the execution of the 

different processes and a functional part that  actually manipulates the data and performs 

the computation required of the program. For example, the part of a concurrent program 

that ensures mutual exclusion between sections of code is in the "synchronization part" 

of that program whereas the code that is made mutually exclusive is in the "functional 
part".  

The synchronization part of a concurrent program is rarely deep, but it is neverthe- 

less frequently complicated. That  is, writing it requires a lot of attention to intricate 

details but does not require insight into a variety of underlying mathematical theories. 

These characteristics make the development of tools for specifying and automatically 

synthesizing synchronization code a highly desirable and yet manageable task. 

In this paper, we propose to use Propositional Temporal Logic (PTL) as a specifi- 

cation language for the synchronization part of CSP-like programs and we present a 

corresponding synthesis algorithm based on tile decision procedure for PTL.  
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CSP, the language of Communicating Sequential Processes, was developed by Hoare 

[Ho78] as a tool for describing distributed processes. It views distributed processes as 

interacting exclusively through well defined inter-process input /output  (t/O) operations. 

This makes it quite easy to separate the "synchronization part" of a CSP program from 

its "functional part". Indeed, the "synchronization part" can be viewed as the program 

abstracted to its I /O operations. To describe the synchronization part of a CSP program 

it is then usually sufficient to give the temporal relations that have to exist between the 

execution of specific I /O operations. 

Propositional Temporal Logic ([Pr67], [RUT1]) is especially well suited for this task. 

Indeed, it is an extension of classical propositional logic geared towards the description of 

sequences. Moreover, PTL is decidable and has the finite model property. That  is, given 

a PTL formula it is decidable if that formula is satisfiable, and if it is satisfiable, it has a 

finite model. This will be the basis of our synthesis method. Indeed, given specifications 

in PTL, we will use a tableau-like method ([Sm68], [BMPS1]) to test for satisfiability 

and construct a model of the specifying formula. We then extract from that model the 

synchronization part of a CSP-like program. 

2. T h e  C S P  F r a m e w o r k  

The framework in which we specify and synthesize synchronization problems is that 

of Hoare's language of Communicating Sequential Processes (CSP) [Ho78]. A program 

in that language is a collection of (possibly nondeterministic) sequential processes each 

of which can include inter-process I /O operations. These I /O operations are the only 

interaction between the processes. Syntactically, an inter-process I /O operation names 

the source (input) or destination (output) process and gives the information to be trans- 

mitted. In Hoare's notation, the operation "output s to process P"  is written 

P!8 

-and the operation "input s from process P" is 

P?s 

Semantically, when a process reaches an input (output) operation, it waits for the 

corresponding process to reach the matching output (input) operation. At that point, the 

operation is performed and both processes resume their execution. There is no queuing 

or buffering of messages. 

We will use CSP with the following modifications: 

a) We consider systems of non-terminating processes. Terminating processes can 
be aCCOlnodated if they are considered to end with a dummy I/O operation that 

is repeated forever. 
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b) As we are interested in pure synchronization problems, we will assumh that  the 

only information exchanged between processes is a finite set of signals sl. 

c) We assume that  when several I /O operations are possible, the one to be executed 

is chosen fairly. More specifically, we assume that  if an I /O operation is infinitely 

often enabled (both sender and receiver are ready to perform it) it will eventually 

be executed. 

We will specify systems of processes where one process, the synchronizer S, com- 

municates with a set of other processes P¢, 1 < i < n. 

Thus, the only communications taking place are between the synchronizer S and each of 

the processes Pi. 

To specify the synchronization part  of such a system, we will look at the infinite 

sequence of I /O  operations executed by each of the processes (S and Pi's) that  we assume 

to be non-terminating. 

Example: Consider the following system: 

where S receives signals sl  and 82 from P1 and signals s3 and s4 from P2. The sequence 

of I /O  operations executed by S will be some interleaving of the four operations Pl?s l ,  

Pl?s2, P2?s3, P2?s4. For instance it could be 

Pl?sl P2784 P2?s3 Pl?sl 

Similarly, the sequence of I /O operations executed by P1 will be some interleaving of 

S!81, S!82 . 

The specifications will, for each process independently, characterize those sequences 

of I /O  operations that  are acceptable. The synthesis algorithm will then generate a 

program that when executed generates a sequence of I /O operations satisfying the specifi- 

cations. 
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3. T h e  S p e c i f i c a t i o n  L a n g u a g e  

As a specification language, we use Proposit ional  Tempora l  Logic (PTL).  Temporal  

Logic was initially developed as a branch of philosophical logic dealing with the  nature  of 

t ime and of tempora l  concepts ([Pr67], [RU71]). Recently it has been aztapted to the task  

of reasoning about  the execution sequences of p rograms and was found especially useful 

in proving propert ies  of  concurrent  p rograms ([Pn77], IMP81]). Here, we use Tempora l  

Logic in a similar f ramework;  the specific format  P T L  system we use is a variant  of the  

one appear ing in [CPSS80]. 

Intuitively, P T L  is a logic oriented towards reasoning about  sequences. It  is a classical 

proposit ional  logic extended with four temporal operators:  O,  <>, [] and U; the  first three 

are unary,  the last binary. For a sequence and a given s ta te  in tha t  sequence, 

O f is t rue  iff f is t rue  in the next s ta te  in the sequence; 

[] f is t rue  iff f is t rue  in all fu ture  states of t ha t  sequence; 

<> f is t rue  iff f is t rue  in some future  s tate  (i.e., it is eventually true); and 

f l  U f2 is t rue  iff f l  is t rue  for all states until the first s ta te  where f2 is true. 

More formally,  P T L  has the following syntax and semantics: 

S y n t a x :  

P T L  formulas are built  f rom 

• A set 2 of atomic propositions: Pl,  P2, P3, . . .  

• Boolean connectives: A , -1 • 

• Temporal  operators:  O ("next"),  [] ("always"),  

U ("until").  

The  format ion  rules are: 

• An atomic proposit ion p ~ 2 is a formula.  

• If f l  and f2 are formulas,  so are 

/1A f2, -~/~, 0 /1 ,  rq /1, <>/1, 

We will also use V and D as the  usual abreviations.  

0 ("eventually"),  

/I  U I2. 

S e m a n t i c s :  

A structure for a P T L  formula  (with set P of at6mic propositions) is a triple A = 

(S, N ,  7r) where 

* S is an enumerable  set of states. 
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• N: (S -+ S) is an accessibility function that  for each state gives a unique 

next state. 

• ~r: (S --* 2 p) assigns truth values to the atomic propositions of the 

language in each state. 

For a structure ~ and a state s E S we have 

(A,s)~ p iff pC~r(s)  

(A,s)~ ~ f  iff n o t { ~ , s ) ,  f 

(~ , s )~  O f  iff (A,N(s))~ f 

In the following definitions, we denote by Ni(s) t he / th  state in the sequence 

s, X(s),  N(N(s)) ,  N(N(N(s) ) ) ,  . . .  

of successsors of a state s. 

{Jt, s)~ [ ] f  iff (Vi ~ 0)({A, Ni ( s ) )~  f)  

(A,s)~ <>f iff (~i>O)({d, Ni(s))~ f)  

{~,8) ~ fl  Uf2 iff (Vi > 0)((J~,N'(s)) ~ fz) or 

(3 i  _> A 

Vj(O ~ j < i ~ (J~,NJ(8)) ~ f l ) )  

An interpretation I -~ (fl, so) for PTL consists of a structure A and an initial state 

s0 C S. We will say that  an interpretation I = (A, so) satisfies a formula f iff (~, 80) ~ f .  

Since an interpretation T uniquely determines a sequence 

= 80, N ( 8 o ) ,  N (8o), . . .  

we will often say "the sequence a satisfies a formula" instead of "the interpretation r 

satisfies a formula". 

Note: The temporal operators we have defined differ from those in {GPSS80] in the 

following way: 

• They are reflexive. That  is, a sta~e is included in its own sequence of successors. 

• The Until operator does not have an "eventuality component". That  is, accord- 

ing to our definitions, f l  U :2 does not imply ~ f2. 

Our purpose in using PTL is to describe processes by specifying their allowable 

sequences of I /O operations. To do this, we consider PTL formulas where the atomic 
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propositions stand for I / 0  operations. And, to reflect the fact that we are looking at 

sequences where only one IJO opei'ation occurs at a time, we systematically add to our 

specifications for each process the following single event condition: 

l < i < : : n  l~ i<: j<n  

where P l , . . . , P ,  are all the atomic propositions (I/O operations) appearing in the specifi- 

cations of that  process. In other words, a state of our temporal logic corresponds to the 

execution of exactly one I /O operation (the atomic proposition true in that state) and 

the "next" state corresponds to the execution of the next I /O operation. 

Example: 

For a process P that sends signals sl and s2 to a process S, 

S!si 

specifies that all its sequences of I/O operations start with S!si. And, 

D(S!sl ~OS!s2) 

specifies that S!si is always immediately followed by S!s2, with no other I /O operation 

being performed by P in between. 

4. E x a m p l e s  of  Speci f ica t ions  

Let us first recall that when we give the specifications for a synchronization prob- 

lem, we independently give the specifications for each of the processes involved (the 

synchronizer S and synchronized processes Pi). That  means that for each process we 

give a PTL formula that, in conjunction with the single event condition (3.1), has to be 

satisfied by the sequences of I/O operations executed by that process. Thus, for instance, 

O means "next" in the particular process we are specifying. 

Ezample t: Mutual Exclusion 

Suppose we have two processes, P1 and P2~ that communicate with a synchronizer 

S. The signals sent to the synchronizer by Pi (i ---- 1, 2) are S!begini (begin critical 

section) and S!endl (end critical section). The synchronizer should ensure that  processes 

P1 and P2 are never simultaneously in their respective critical sections that start with 

S!beginl and end with Slendi. What the specifications for a process P; should say is that  

Pi alternately sends begin~ and endi signals, starting with a beginl. This is expressed by 

the conjunction of the following formulas: 

S!begin~ 
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(the first signal sent is begin critical section) 

N(S!begin~ D 0 S!endl) 

(after a begin critical section signal, the next signal sent is end critical section) 

[](S!endi D 0 S!begin~) 

(after an end critical section signal, the next signal sent is begin critical section). 

The specifications for the synchronizer are: 

[:](Pl ?beginl D ((-~P2?begin2) U(P~ ?end~))) 

(after letting P1 proceed into its critical section by accepting a beginl signal, do not let 

P2 enter its own critical section until P1 has finished) 

D(P2?begin2 D ((-~Pl?begin,) U(P2?eq~d2))) 

(after letting t)2 proceed into its critical section by accepting a begin2 signal, do not let 

P1 enter its own critical section until P2 has finished). 

One would expect that it is also necessary to specify absence of starvation: 

E](~ Pl?beginl V 0 Pl?endl) 

(do not neglect P1 indefinitely) 

Y](O P2?begin2 V ~ Pl?end2) 

(do not neglect P2 indefinitely). But as we will see later, in section 6, we do not have 

to write these conditions explicitly since they will always be systematically introduced 
during the synthesis. | 

Ezample 2: Dining Philosophers 

We specify the classical dining philosophers problem for three philosophers. Three 

philosophers are sitting at a round table in a Chinese restaurant alternatively thinking 

and eating. Between two philosophers there is only one chop stick and a philosopher 

needs to pick up both the chop stick at his left and the one at his right before he can 
eat. 

@ 

@ @ 
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The problem is to synchronize the eating of the philosophers. We have a process _P¢ 

per philosopher and a synchronizer (or "chop sticks" process) S. Each philosopher Pc 

communicates with the synchronizer S by four operations: 

S!pickl 
S!picki@l 
S!puti@l 
S!puti 

pick up chop stick i 

pick up chop stick i @ 1 

put down chop stick i @ 1 

put down chop stick i 

(O  designates addition modulo 3; we will also use @ for subtraction modulo 3). 

The specifications for each philosopher PC, i ~ 1, 2, 3 are: 

S!picki 

(the first signal sent is pickl) 

[:](S!pickl D 0 S!picki®l) 

D(S!picki@l D 0 S!puti@t) 

[:](S!puti@l D 0 S!puti) 

D(S!puQ D 0 S!picki) 

Again, these specifications say that each philosopher repeatedly picks up one chop stick, 

picks up the second, puts the second chop stick down and puts the first chop stick down. 

The specifications for the synchronizer are 

[](p ?pick  ((.P el ?pickJ 

[](P ?piek G1 (( P e ?pick,el) U(P ?put,el))) 

for i ----- 1, 2, 3. These essentially say that  a chop stick cannot be picked up by two 

philosophers simultaneously. 

5. O v e rv i ew  of' t he  Synthes i s  

As described in Section 3, when we specify a system of processes, we specify each 

of the processes involved separately. This makes the specification task much easier. 

However, to deal with some properties of the system like absence of deadlock or star- 

vation, we have to look at the combination of the specifications of all the processes in- 

volved. But, as the specifications refer to the sequence of I /O operations of each process 

separately, we first have to modify these specifications so that they refer to the global 
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sequence of I / 0  operations, that  is the merge of the sequences of I /O operations of the 

individual processes. 

Thus, the first step of our synthesis is the relativization procedure that  takes the 

specifications of each process (the local specifications) and transforms them into specifica- 

tions for the global system of processes (the global specifications). After the relativization, 

we proceed to do the synthesis with the global specifications of the system of processes. 

The second step is then to apply a tableau-like satisfiability algorithm for PTL to 

these global specifications. The tableau decision procedure we use is essentially the one 

described in [BMP81] restricted to linear time and modified to use our assumption that  

exactly one atomic proposition is true in each state. 

The decision procedure can have two possible outcomes: either it declares that  the 

specifications are unsatisfiable and in that  ease it means tha t  there is no program that  

can satisfy the synchronization problem as specified. Or, it produces a model graph from 

which all possible models of the specifications can be extracted. 

This model graph could almost be transformed into the programs we are synthesizing 

except for the fact that  there could be some paths in the graph tha t  never satisfy some 

eventualities (properties of the form ~ f).  In other words, though all models of the 

specifications can be generated from that  graph, not all paths generated by the graph 

are models of the specifications. Our next step will thus be to unwind the graph to 

obtain an actual model of the specifications. Unfortunately, this unwinding usually gives 

a graph that,  though it generates only models of the specifications, generates only one or 

a few of the possible models. In programming terms, this means that  our processes will be 

restricted to only a few of the possible execution sequences satisfying the specifications, 

which clearly is undesirable. 

In the special case where the eventualities are "non temporal" (i.e., of the form O ] 

where f does not contain temporal operators) we are able to avoid unwinding by relying 

on our fairness hypothesis on the execution of CSP programs. We then synthesize our 

programs from a model graph that  not only generates only models of the specifications 

(given the fairness hypothesis) but also can generate all possible models. 

The final step in the synthesis will be to extract the processes from the model graph. 

This is rather straightforward as the model graph itself can be viewed as the synchronizer 

process and the other processes can be obtained as restrictions of that  graph. 

In summary, the steps of our synthesis will be 

1) relativize the specifications (to obtain the global specifications). 

2) apply the satisfiability algorithm (to obtain the model graph). 

3) unwind if necessary (to satisfy eventualities). 
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4) generate the individual processes. 

6. R e l a t i v i z a t i o n  

Our purpose here is to take the local specifications of the processes and transform 

them into global specifications for the sequence of I /O operations executed by the whole 

system of processes. At first glance it might seem that the global specifications would 

simply be the conjunction of the specifications of all the processes involved. However 

before taking that conjunction there are three problems that have to be dealt with: 

(1) At the global level, the sending and receiving of a given message is a single action. 

Thus, we have to make explicit the correspondence between pairs of matching 

I /O operations; that is, pairs of operations consisting of an output operation that 

sends a given message (e.g. S!s appearing in Pi) and the corresponding operation 

that  receives that  message(e.g. Pi?s appearing in S). 

(2) The local specifications for a process describe its sequence of I /O operations. But, 

that sequence is only a subsequence of the global sequence of I/O operations. The 

local specifications have to be modified to reflect this fact. Note: we are reasoning 

under our assumption that only one I /O operation happens at a time (locally and 

globally). 

(3) The subsequence of the global sequence corresponding to each process is infinite. 

This has to be made explicit in the global specifications. 

These considerations lead us to the following three steps of our relativization proce- 

dure. 

(1) Rename matching I /O operations to a unique new appellation. For example we 

would, in our preceeding example, rename S!beginl and Pl?begin 1 to beginl. .  

(2) Define inPi to be Pl V . . .  Vpn where Pl, • . . ,  pn are the I /O operations appearing 

in Pi. Then, to refelect the fac~ that  the specifications for Pi concern a subsequence 

of the global sequence, we transform these specifications using the two following 

rules: 

p ( inP, up) (6.0 

where p is an atomic proposition, and 

0 f (- inP, u( nP, A o.f)) (6.2) 

That  is, the right-hand side of (6.1) is substituted for all the atomic propositions 

in the specifications of Pi and the right-hand side of (6.2) for all occurences of O. 

262 



Note: in our specific framework, all I /O operations occur between the synchronizer 

S and some other process Pi. Thus for the synchronizer ins = true and its 

specifications need not be modified. 

(3) For each process Pi we add the following infinite subsequence requirement. 

[] o(inP0 (6.3) 

That  is, some operation of process Pi has to occur infinitely often in the global 

sequence. 

The global specifications are then the conjunction of the specification for the synchro- 

nizer, the specification for the processes Pi modified using (6.1) and (6.2) and the require- 

ments (6.3). 

The only non-trivial step is step (2). Let us call the local specifications for a process 

Pi transformed by using rules (6.!) and (6.2) the modified specification8 for Pi. We have 

the following result: 

Proposition 6.1: A sequence satisfies the modified specifications for Pi if and only if its 

subsequence consisting of all the I /O operations of Pi satisfies the original specifica- 

tions for Pi. 

The proposition can be easily proved by induction on the structure of the specifications 

for Pi. 

Before we give an example, let us first note that  for a formula relative to a process 
P¢ that  is of the form 

D(p o q) 

(i.e., if p then q in the next state) the relativized version is 

[:]((~inPi Up) D (~inPi U(inPi A O(~inPi U q)))) 

This can be simplified, using PTL equivalences to 

F'l(p D O(~inPi U q)) 

(i.e., if p then, from the next state on, we are not in Pi until q). 

Ezample: Mutual exclusion problem 

Let us recall that  the specifications for the mutual exclusion problem are: 

For the processes Pi, i = 1, 2: 

S!begin{ 
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O(S!beginl D 0 S!endi) 

O(S!end~ D 0 Sttregin~) 

For the synchronizer S: 

O(P2b  in2 

Then, if 

inP1 

inP2 

beginl V endl 

= begin2 V end2, 

the global specifications for the mutual exclusion problem are: 

From the specifications of PI:  

~inP1 U beginl 

•(begin1 ~ O(~inP~ U end~)) 

O(~nd~ D O(-i~P1 V b~gin~)) 

From the specifications of P2: 
-~inP2 U begin2 

[](begin2 D O(~inP~ U ends)) 

O(end2 ~ O(~inP~ V begin2)) 

From the specifications of S : .  

•(beginl D -~begin2 U endl) 

O(begin2 D -~beginl U end2) 

The infinite subsequence requirements: 

[] (7 inP1 

[] <~ inP2 

Remark: The relativization procedure can be viewed as a semantic rule for the execution 

in parallel of communicating processes. Indeed, if we view the meaning of a communicat- 

ing process as its possible sequences of I /O  operations as describcd by a PTL formula, 
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then the relativization procedure gives the meaning of the concurrent exdcution of the 

processes. 

7. T h e  Sa t i s f i ab i l i ty  A l g o r i t h m  

In this section we wilt describe the tableau method we use to test for satisfiability 

and construct a model of the globat specifications. We will first briefly review the 

tableau method for propositional calculus, then indicate how it can be extended to handle 

temporal logic and finally give in detail the exact algorithm we have developed for our 

specific purpose. 

A set of formulas {f l , - -  -, fn} is satisfiable if there is an interpretation tha t  simul- 

taneously satisfies all the formulas in tha t  set. The tableau method for propositional 

calculus is based on the following relations between satisfiablillty of sets of formulas: 

TI :  A set of formulas { f l , - . - ,  fl, A f ;2 , . . . ,  f~} is satisfiable if and only if the set of 

formulas { /1 , . - . ,  fil, fi~,..., fn} is satisfiable 

T2: A set of formulas {fl , . . . ,  ~(fi~ A fi~),..., f,~} is satisfiable if and only if the set 

{fl , . . . ,  ~fi~,..., f~} or the set {fl,...,-~fi~,..., fn} is satisfiable 

T3: A set of formulas {f l , . . . , -~-~f¢, . . . ,  fn} is 'satisfiable if and only if the set 

{ f i , . . . ,  f i , . . . ,  fn} is satisfiable 

To test a formula f for satisflability, one thus starts with the singleton {f} and uses 

rules T1-T3 to decompose f into sets of its subformulas. If the decomposition is carried 

on until the sets contain only atomic formulas (atomic propositions or their negation), 

satisfiability can easily be decided. Indeed, a set of atomic formulas is satisfiable if 

and only if it does not contain a proposition and its negation. This procedure actually 

corresponds to transforming the formula into disjunctive normal form. An extensive 

study of tableau methods for propositional and predicate calculus appears in [Sm68]. 

For PTL we also have to deal with the temporal operators. This can be done with 

the following three identities 

Df =_ f:',OD/ (7.1) 

of ~_ fvOOf (7.z) 

:~u:~ - :2 v (A :, o(Au:~)) (7.3) 

These identities will enable us to decompose a formula into sets containing atomic 

formulas (atomic propositions and their negation) and PTL O-formulas (formulas having 

O as their main connective). The achievement of such a decomposition is to separate 

the requirements expressed by the formula into a requirement on the "current state" (the 
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atomic formulas) and into a requirement on "the rest of the sequence" (the Od~ormulas). 

One then checks that  the set of formulas concerning the "current state" is satisfiable 

and then repeats the whole process with the O-formulas, after having removed their 

outermost O operator. In other words, one tests for satisfiability by trying to build a 

model state by state. As all the formulas appearing in the process ~re subformutas of 

the initial formula, one will eventually reach a state that  has already occurred, thus the 

process terminates. 

There is, however, at that  point one more step to do. The identity (7.2) allows us to 

satisfy (> f by always postponing it (O ~ f).  Thus, before declaring a formula satisfiable, 

we have to check that  all the formulas of the form O f can be effectively satisfied; that  

is, that  there is a possible future state in which f is true. 

Let us now describe our algorithm in more detail. The central part  of the Mgorithm 

is the decomposition procedure that  separates the requirements expressed by a set of 

formulas S into requirements on the "current state" and on the "rest of the sequence". In 

that  procedure, we use our a~sumption that  exactly one atomic proposition is true in each 

state. That  assumption makes it much more efficient to check all possible assignments 

of truth values to the atomic propositions in the current state (the number of such 

assignments is the same as the number of atomic propositions in the language) than to 

brutally apply the decomposition to a set of formulas including the single event condition 

(3.1). Indeed, the latter could lead to examining a number of cases that  is exponential 

in the number of atomic propositions, but that  would eventualy be restricted to a linear 

number. 

To do this, we decompose the set of formulas S separately for each atomic proposition 

in the language. That  is, for each proposition p, we decompose the set of formulas under 

the assumption that p is true and the other atomic propositions false. The decomposition 

procedure thus takes as inputs a set of PTL formulas S and a proposition p. It  outputs 

a set Ep of sets S~ of formulas fli, i.e. Ep : {S~} where each S~ = {fij}. Each formula 

fo" E Si either is a O-formula or is "marked", i.e. it is a formula that  already has been 

used in the decomposition and is only kept for reference. Under the assumption that  

p is true, the original set of formula.s S is satisfiable if and only if, for some i, all the 

unmarked formulas in S/ are satisfiable. In other words, the O-formulas in each set S¢ 

give one of the possible requirements on the "rest of the sequence" if p is the proposition 

true in the current state. 

The decomposition procedure initializes Ep with the set of sets of formulas {S} 

and then repeatedly transforms it until all the elements Si of Ep contain only marked 

formulas or O-forn~lulas. It  is the following: 

(1) (Initialize): start  with Ep = {S}. 

(2) (Expand): repeat steps (3)-(5) until for all Si E Ep, all the formulas fij E Si are 

marked formulas or O-formulas. 
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(3) Pick a formula fii  C Si C Ev that is not marked and not a O-formula. 

(4)(Simplify): In the formula fiy, replace all the occurrences of p that are not in the 

scope of a temporal operator by true and all similar occurrences of the other 

atomic propositions by false. Perform boolean simplification. This yields a 

formula f~d, called "fiy simplified for p". 

(5) (a) if f~j = true replace Si by Si - {f/y}. Given that p is true, fij  is identically 

true and can thus be removed from St. 

(b) if f}.i ~ false replace Zp by ~p - {Si}. In this case, fl j  is false and the 

set Si is unsatisfiable. It can thus be removed. 

(e) if f}j is a O-formula, replace Si by (S i - { f i j } )U{ f } j } .  As we have obtained 

a O-formula, no more decomposition is necessary. 

(d) if f~j is of type a (see table below), replace S / b y  

(s l  - {/~;}) u { f ; ; , ,  ~1, ~2} 

where i t fi~'* is f i j  marked. Since a formula of type a is satisfiable iff both 

a l  asad a2 are satisfiable, we replace f / i  by a l  and a2. We also keep a 

record of f~j by marking it. 

(e) if f~j is of type /3 (see table below), replace Si by the two following sets: 

(Si - ( f i j})  U {f~5*'/31}, (Si - (f l j}) U {f~j*, 132} 

where f~j* is f~5 marked. Since a formula of type fl is satisfiable iff either 

/~1 or f12 are satisfiable, we replace Si by two sets: one containing fll and 
one containing f12. 

The formulas of type a and fl are given in the following two tables. Notice the 

correspondence between the entries in the tables concerning temporal operators and the 

identities (7.1)-(7.3). 

a l  ~2  

f~ A h f~ /2 

- ~ f l  f l  f l  

-~ 0 f l  0 -~fl 0 -~f~ 

Dfl A O n f l  

-~(A U f~) -~f~ -~f~ v O-~(fl U f2) 
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~ ( f i A f 2 )  ~fl  ~f2 

Ofl h O<>A 
(fz Uf2) f2 fl A O( f l  Uf2) 

~ O h  ~A O~Elh 

Example: Let us apply the decomposition procedure for q to the set of formulas 

S = {O(q :3 ~(p U r))}  

Eq first gets initialized to 

Eq = {{El(q D (~p U r))}} 

At that point, the only formula we can choose in step (3) is El(q D (-.p U r)). _As all its 
atomic propositions occur within the scope of a temporal opeartor (El), step (4) does not 

modify it. Step (hd) splits El(q D (-~p U r)) into q D (-~p U r) and 0 Fl(q D (-~p U r)), 
therefore, we get 

Sq ~- {{q D (~p U r), 0 Fq(q D (-~p V r)), El(q D (-~p U r))*}}. 

Step (3) then chooses q D (-~p V r) which is simplified by step (4), a~er replacing q by 
true, to (-~p U r). This is a formula of type fl, we thus split the set that contains it into 
two sets: one containing r and the other containing -p  A O(-p  U r). 

Sq = ({r, (-~p Ur)*, 0 E](q D (-~p Ur)), E](q D (-~p Ur))*}, 
{~p A o(~p v r), (~p V r)*, O O(q D (~p V r)), [](q D (~p U r)),)). 

Then, as r simplified for q is false, by (hb) the first set is removed and we get 

Eq~-{{~pAO(-~pUr), (~pUr)*, OE](qD(-~pUr)), E](qD(~pUr)),}}, 

And, finally, as -~p A O(-~p g r) simplified for q is O(-lp U r) (p is replaced by false), we 

get by (5c) 

~ = { { o ( ~ p  y ~), ('~p Ur)*, 0 D(q D ('~p Ur)), El(q D ('~p Ur))*}}. 

| 

We can now proceed to describe the satist~ability algorithm. This algorithm uses the 

decomposition procedure to build a model graph that is a search for all potential models 
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of the formula. From that  graph, we will be able to decide satisfiability and to construct 

a model. Each node and edge in the graph is labeled wi~h a set of formulas. The sets of 

formulas labeling an edge always contain exactly one of the atomic propositions of the 

language. The edges of the graph will correspond to the "states" of the interpretation of 

PTL. 

The graph is constructed as follows: 

(1) Start with a graph containing just one node labeled by a set S containing tile 

formulas fl to be tested (the initial formulas),i.e. S = {fi}. 

(2) Repeatedly apply step (3) to the nodes of the graph unfit it has been applied to 

all nodes. 

(3) For every atomic proposition p in the language: 

(a) Apply the decomposition procedure for p to the set S of formulas labeling 

the current node. 

(b) For each set Si in the set Ep generated by the decomposition procedure, 

create an edge labeled by {p} U Si leading to a node labeled by the set of 

all formulas f such that 0 f E Si or to a node that can be determined to 

be labeled by an equivalent set of formulas. If there is no such node, create 

one. 

Example 1: For the formula 

So = m(q D (~p u,)), 

the graph is: 

l(-~p v , ) , ,  tl ~ LJtq - j  t p u r ) ) , t  

/ 

D(q ~ (~p u r/)*, 

"-::L t{7;;r);; J 
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This graph was constructed by starting with a node labeled by {[2(q D (-p U r))}. 
Then, applying the decomposition procedure for q to that set of formulas we obtain, as 

described previously 

Eq = {{O(-~p Ur), (~p gr)*, OE](q D (-,p Ur)), rT(q D (-~p Vr)).}}. 

Thus we create an edge labeled by 

{q, O(~pUr), (-~pUr)*, Or3(qD(-~pUr)), [](qD(-~pUr)),}. 

Since this set contains two O-formulas (O(-~p U r) and O •(q D (-~p U r))), the edge 

leads to a node labeled by 

{(~pU,) ,  [ ] (qD(~pU, ) )} .  

The other edges are constructed similarly, il 

Example 2." Mutual exclusion problem. 

Let us recall that the global specifications for the mutual exclusion problem are: 

-~inP1 U begin1 

D(beoi,,, D o ( - ~ p :  u e~d:)) 

=(endl D O(-TinP1 U begin1)) 

"~inP2 U begin2 

D(beqin, ~ O(~i,P2 U end,)) 

D(e~d, D o(-~i,,,':', v begi~.)) 

F3(beginl D -~begin2 U endl) 

D(begin~ D -~beginl U ends) 

[] 0 inP: 

[] <> inP2 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

The graph the satisfiability algorithm yields for these specifications is then: 
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" begin l, 
(7.4)*,..., (7.13)*, 

(-~begin2 U endl)*, 
~inPl*, OinP2* 
0(7.5),..., 0(7.13), 
O(~inP1 U end1), 
O(-~begin2 U endr), 
0 0 i n P 2  

(7.5) , . . ,  (7.13), '} 

(~inP1 U endl), 
(-~begin2 U endl), ~- 
0 inP2 

/ 
){(7.4),...,(7.13)} 

'begln2, 
(7.4)*,..., (7.13)% 

(-~beginl U end2)*, 
0 inPl*, 0 inP2*, 
0(7.4), . . . ,  0(7.6), 0(7.8) , . . . ,  0(7.13), 

t O('~inP2 U end2), 
O('~beginl U end2), 
0 ~ inP1 

[(7.4),..., (7.8), (7.8),..., (7.13),) 
~ J  (-~inP2 U end2), 
~-~(=beginl U end2), 

lp~, 
! , ~  inP1 

l end1 end2, 
l(7.5)*,..., (7.13)*, (7.4)*,..., (7.6)*, (7.8)%..., (7.13)*, 

I 0 inPl*, ~ inP2* 0 inPl*, ~ inP2*, 
~(-~inP1 u end1)*, (-~nP2 U end~)*, 
l(~e~in2 U e~dl)*, ~ / (-~begi,,~ ue~a~),, 
|0(7.4),..., 0(7.13), ~ 0(7.4),..., 0(7.13), 
( 0  ~ inP2 •0 0 inP1 

Note that the end1 edge from n2 is supposed to lead to a node labeled by 

{(7.4),...,(7.13), OinP2}. 

But, as (7.13) is [] O inP2 and as [] Op  ~ [] Op  A Op, this set is equivalent to 

{(7.4),...,(7.13)} 

and the edge can lead to nl .  Similarly, the end2 edge from n3 also leads to hi .  | 

It is straightforward to give an upper bound on the size of the graph. The number 

of nodes in the graph is at most 2 4c+2 where c is the number of temporal operators in 

the formula to be tested. Indeed, given the a and fl rules, the formulas appearing in a 
node are either the initial formula, a subformula of the initial formula with a temporal 
operator as its main connective (there are exactly c such formulas), a subformula of the 

initial formula appearing in the immediate scope of a O operator (there are at most c 

such formulas) or the negation of any of the above. There are clearly at most 4c + 2 such 
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formulas and as each node is characterized by a subset of these formulas, a bound on the 

number of distinct nodes is 24c+2. 

The last step of satisfiability algorithm is to cheek that  all the nodes are satisfiable 

and that  all eventualities can effectively be realized. For this, we apply the following 

nodes and edges elimination procedure: 

Repeatedly apply the following two rules until no longer possible. 

(1) If a node has no edge leaving it, eliminate that  node and all edges leading 

to it. 

(2) If an edge contains an eventuality formula, that  is a formula of the form 

0 f l ,  ~ []-~fl  or -~(~11 U f2) 

then, delete that  edge if there is no path from that  edge leading to an edge 

containing {p, f~} for some atomic proposition p in the language, where 

f~ is fz simplified for p. 

Note: In the preceeding examples, no elimination is necessary. 

We have the following result: 

Proposition 7.1: The initiM formula, in conjunction with the single event condition (3.1), 

is satisfiable if and only if the result of the elimination process is not the empty graph. 

We will not give here a proof of this result as such a proof would follow very closely 

the one presented in [BN~81] for a branching time PTL and in [Wo81] for an extension 

to PTL. 

8. E v e n t u a l i t i e s  a n d  U n w i n d i n g  

If the specifications are satisfiable, the decision procedure described in the previous 

section has provided us with a non-empty graph. This graph describes the models of 

the specifications in the sense that  every sequence that  is a model is a path  in the 

graph and that  every finite path obtained from the graph is the prefix of some model. 

This latter property simply follows from the fact that  the decision procedure ensures 

that  the sets of formulas associated with each edge or node of the graph are indeed 

satisfiable. Unfortunately, it is not always the case that all infinite paths obtainable 

from the graph satisfy the specifications. Indeed, some of these paths could leave some 

eventuality formula unsatisfied. However, it is always possible to modify the graph so 

that  every infinite path satisfies the specifications. 

The construction basically proceeds by unwinding the graph up to states where the 

eventualities are actually realized. The new graph is finite and can be used to generate the 
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program we are trying to synthesize~ This unwinding has the disadvantage that  it forces 

the processes to execute one specific path among all those that  satisfy tile specifications; 

clearly, this can tead to undesirable inefficiencies. 

Example: If the specifications are 

D O a  A D(>b, (8.1) 

the unwinding algorithm could, for instance, give the sequence a, b, a, b, a, b, ... as a 
model, in other words it would require that  in order to satisfy (8.1.) we alternatively 

execute a and b. This is correct but could be unacceptable in a situation where a can be 

repeated substantially faster than b. | 

In the next section, we will see that  under some conditions, the unwinding can be 

avoided. In the meantime, let us examine the unwinding procedure we use. 

Given a graph G : (N, E) with nodes N and edges E,  produced by the satisfiability 
algorithm, we build a new graph G ~ ---- (N  ~, E r) as follows. 

(1) Initially G' consists of a set N~ --~ N of nodes. We will call N~) the initial nodes. 

(2) For each node n~) C N~) do the following: 

(a) Select an edge e C E leaving the node n C N corresponding to n~. 

(b) Build a path starting with e~) ~- e such that  all eventualities in e~) are 

satisfied on that  path. Given the fact that  in the decision procedure we have 

eliminated all edges containing eventualities that  could not be satisfied, we 

are guaranteed that  such a path always exists. 

(c) Let e} be the last edge in the path built in (b). If the corresponding 

edge e I C E leads to a node n E N then connect e} to the corresponding 

The result of the construction is a structure that  satisfies the specifications. 

-Example: 

For the mutual exclusion problem we specified earlier, the graph G we obtained from 
the decision procedure is of the form: 

(beglnl,S 
O inP1, k ~ ~ )  inP1, 
O inP2 } ~ ~ ~ O inP2 } 

inP2 } ~ x..~..~ O inP2 } 
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For the sake of simplicity we have only annoted the edges with atomic propositions 

and eventuality properties. If we apply the unwinding algorithm to this graph, we get 

the following graph G' where N~o -~ {nil, n~, n~}: 

begin1 
0 i n P l f  
0 i n P ~  

endl / 
0 i n P l f  
'~ i n P 2 ~  

beg in2~  
0 inP11 
4) inPg~ t 

end, / end2 f~ l 
oinP,| <>inS"l t 

/ be,i:  f f 
71:7:  j 

J 

To build the path starting from n~, we select the beginl edge leaving nl in G. This 

edge contains two eventualities: (> inP1 and <~ inP2. A path that satisfies both these 

eventualities is 

~ begin2 
> 

as begin1 satisfies (~ inP1 and begin2 satisfies (~ inP2. We thus incorparate this path 

into G I and connect its last edge to n~. | 

9. D y n a m i c  Sat is f iabi l i ty  

As we pointed out in the last section, unwinding can lead to very inefficient programs. 

What we would really like is to be able to avoid the unwinding and decide dynamically, 

during the execution, which path through the graph we are going to take, but  still do 

this in a way that  satisfies the eventualities. 

This is possible when the following three conditions are satisfied. 

(1) the CSP program generated is executed fairly; that is, if a communication is 

infinitely often possible it is eventually executed. 

(2) all eventualities are non-temporal, i.e. in all eventuality formulas 

<> :~, -, []-.A o r  -.(-.A u/2) 

labeling edges, f l  does not contain any temporal operators. 
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(3) The graph satisfies the following dynamic satisfiability criterion. 

Dynamic Satisfiability Criterion: 

Let us denote by Hi the set of atomic propositions corresponding to the I /O operations 

performed between the scheduler S and a process P~'. A model graph is said to satisfy 

the dynamic satisfiability criterion if for each edge containing an eventuality formula of 

the form 

<>/1, - [ ] - f l  or ~ ( ~ f l  U ]5) 

(where f l  is non-temporal) all maximum acyclic paths starting from that edge either 

(1) contain an edge labeled by a proposition p that satisfies f l  

o r  

(2) contain a node that has an outgoing edge labeled by a proposition p C Hi 

satisfying f l ,  provided that either 

(a) the edge leaving that  node and included in the path is labeled by an 

atomic proposition q E Hi, i.e. an atomic proposition representing an I /O 

operation performed by the same process Pi as the one performing p 

o r  

(b) No atomic proposition q labeling an edge of that  path or any other 

maximum acyclic path on which f l  has to be satisfied and conditions (1) 

or (2a) do not hold is in Hi. 

Essentially, the criterion checks that  on all infinite paths, either the eventuality is realized 

or it is infinitely often "possible" and thus will be realized due to the fairness assumption. 

That  means that  any "fair" path in the graph is a model of the specifications and, as we 

will see, will be a potential execution sequence of the synthesized programs. The precise 

justification of the criterion involves the way we obtain the individual processes and the 

assumptions we make about their execution. We will discuss these issues in the next 

section and thus postpone our proof of the criterion until then. 

Note: In the mutual exclusion example tile three conditions axe satisfied. We therefore 

do not need to unwind that graph. | 

10. G e n e r a t i n g  t h e  processes  

The processe we generate will Iook very much like the model graphs we have been 

dealing with in the preceeding sections. If one takes such a graph and eliminates all 

the labeling except for the I /O operations labeling edges, the result can be interpreted 

as a CSP-like program. Indeed, executing such a program is traversing the graph while 
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performing the I /O operations on the edges. A node with several outgoing edges is 

viewed as a guarded command that  has as guards the I /O operations appearing on those 

edges. Thus, according to the definition of CSP, when such a node is reached, one of the 

operations that  is enabled (i.e., such that  the matching process is also ready to execute 

it) is chosen and the corresponding edge is followed. 

The easiest process to obtain is the one for the synchronizer S. As we explained in 

section 2, all I /O  operations are between the synchronizer and some other process Pi. 

This implies that  the model graph we have obtained from the global specifications can 

be taken as the program for the synchronizer. The only (trivial) transformation that  

needs to be done is to rename the I /O operations back to their local name (e.g., begin1 
becomes Pl ?beginl). 

Each of the other processes will be obtained by restricting the model graph to the 

I /O operations of that  process. 

For a model graph G = (N, E) and a process Pi, we thus build a restricted graph 
G~ = (N~,E~). Each node of Gi (hi E Ni) corresponds to sets of nodes of the graph G. 

For a node nl, we denote its corresponding set of nodes of G as J¢~, C N .  If the I / O  

operations of Pi are Hi -~ {pl, - . . ,  pn}, the construction proceeds as follows: 

(1) Initially, Gi contains one node; this node corresponds to an initial node of G and 

all nodes accessible from that  node in G through a path containing no edge labeled 

by a proposition p C IIi. 

(2) Repeat step (3) until it has been applied to all nodes in Gi. 

(3) Select an unprocessed node nl E Ni. For all propositions p E Hi create an edge 

from n¢ to a node n~ E N¢ such that  the set J¢~ is the set of all nodes accessible in 

G from any node in ~ ,  through a path containing exactly one occurrence of p and 

no occurrence of any other member of Hi (we call such a path a p-path). A new 

node n~ is created only when G¢ does not already contain a node characterized by 

the set ~ '~ .  If )¢~ ~ ¢ no edge is added. 

We then just have to rename the I /O operations back to their local name to obtain 

the process Pi. 

Ezample: 

For the mutual exclusion problem specified in section 4, the program for S is: 
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P1. • d2 

for the processes P1 we have 

S!beginl S!endl 

and for the process P~ 

S!begzn2 S!end2 

To obtain the graph for t91, we start with the set of nodes in the model graph accessible 

from nl by a path not labeled by any operation of process P1- This set is (nl, n3) . The 

only node accessible from either n I or n3 through a beginl-path is n2. Thus we have a 

path labeled by begin1 leading to a node labeled by (n2}. There are no nodes accessible 

from either n l  or na through an endl-path, thus no edge labeled by endl wilt leave 

the node {nl, n3) of the graph for process P1. The edges leaving {n2} are constructed 

similarly. | 

We view the execution of such a system of processes as it is defined in CSP. That  

is, the processes have to execute matching I /O operations simultaneously. Note that 

even though our processes consist solely of I /O operations, we do not assume anything 

about the relative speed of their execution. This means that after a process executes an 
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I /O  operation, there could be an arbitrary finite delay before it is ready to execute the 

following one. This delay could for, instance, correspond to the execution of a purely 

sequential piece of code. 

The last step now is to derive actual CSP programs from the graphs. A simple way 

to do this is to assign a number to each node of the graph and use a variable N to keep 

track of the location in the graph. The program is then just one repetitive command 

where the guards are composed of a test  on the value of N followed by an t /O operation, 

and where the bodies are just an updating of N .  

Example: 

For the synchronizer S in the mutual exclusion example, the CSP program is: 

*[ N = 1; Pl?beginl  ~ N :-~ 2 

UN = 1; P2?begin2 ~ N := 3 

UN =-- 2; Pl?endl  ~ N : =  1 

~N = 3; P2?end2 ~ N : =  1 ] 

The program repeatedly checks at which location in the graph it is, then waits for 

the corresponding inputs and finally updates its location variable. 

For the process P1, the program is: 

*[ N ---- 1; S!beginl  ~ N :-~- 2 

~ N = 2 ;  S!endl  --, N :=  I ] 

and for the process P2, the program is: 

,[  N = I ;  S!begin2 --* N :=  2 

~N = 2; S!end2 ~ N :~- 1 ] 

I~ these programs a purely sequential piece of code can be inserted immediately after 

the updating of the location variable N.  | 

From the way the processes were obtained, it is clear that  any concurrent execution of 

the system of processes (more precisely the sequence of I /O  operations performed during 

the execution) will correspond to a path through the global graph. Thus in the case 

where we have unwound the graph, the synthesized processes satisfy the specifications. 

However, we still have to prove that  if the global graph satisfies the dynamic satisfiability 

criterion, then any fair execution of the extracted program will satisfy all eventualities. 

Recall that  in a fair execution every I /O operation that  is infinitely often possible (both 

sender and receiver are ready to perform it) will eventually be executed. 
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Proposition 9.1" If the model graph satisfies the dynamic satisfiability ~riterion, then 

every fair execution of the extract~ed programs satisfies the specifications. 

Proof: In view of the preceeding remarks, it is sufficient to show that  all eventualities 

are satisfied. Let us assume that  there is some eventuality formula (O f)  that  is not 

satisfied for some fair computation. We wilt show that  some operation that  realizes the 

eventuality (satisfies ] )  is infinitely often possible during that  computation. Hence, due 

to our fairness assumption that  operation will be executed, and we have a contradiction. 

Actually, all we need to show is that  for such a computation, some operation satisfying 

the eventuality will be possible in a finite number of steps. Indeed, the same argument 

can then inductively be applied to the computation starting after the point where the 

operation was possible. And, as we only have a finite number of possible I /O  operations, 

one of those satisfying f will be infinitely of Len possible. 

Let us consider the path through the global graph corresponding to our computation. 

Clearly, no operation p satisfying f appears on that  path. Thus either condition (2a) or 

(2b) of the dynamic satisfiability criterion is satisfied on every maximal acyctic part  of 
the path. 

(1) If condition (2a) is satisfied somewhere on the path we have a node on 

the path that  has an outgoing edge labeled by an operation p satisfying 

f .  Thus, at that  point the synchronizer S is ready to perform p. As the 

operation on the path is in the same process P~ as p, that  process must 

also be ready to perform p. Thus p is possible. 

(2) If condition (2a) is never satisfied, then (2b) has to be satisfied on every 

maximum acyclic part  of the path. Thus some operation p will repeatedly 

appear as an alternative branch on the path. As no operation in the process 

Pi containing p appears on the path, when Pi becomes ready to execute p 

it will remain in that  state. Then, when the synchronizer reaches the next 

node where p is an alternative, p will be possible. | 

12. C o n c l u s i o n s  a n d  C o m p a r i s o n  w i t h  O t h e r  W o r k  

We have shown how the "synchronization part" of processes could be specified and 
synthesized. The main techniques we have used are" 

(1) abstracting concurrent computations to sequences of "events" (in our case 
I /O  operations) 

(2) describing these sequences using Propositional Temporal Logic 

(3) using the tableau decision procedure for PTL to synthesize the processes. 

Clearly there are some limitations to our approach. The most fundamental one 

is that  the synthesized processes are intrinsically finite state. However, this does not 
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exclude practical use of the method since many synchronization problems have finite 

state solutions. Getting rid of this limitation would most likely eliminate the decidability 

property of our specification language. We would then no longer be able to guarantee a 

correct solution to the problem whenever the specifications are satisfiable. 

The PTL we have used in this paper, though it has been called expressively complete 
since it is as expressive as the first order theory of linear order [GPSS80] cannot describe 

all finite-state behaviors. However, an extension to PTL that would allow the description 

of all such behaviors has been recently developed [Wo81]. Incorporating it in our specifi- 

cation language would let us describe a wider class of synchronization problems. We also 

plan to apply the techniques we developed here to the synthesis of network protocols and 

sequential digital circuits. 

Among related work, we should first mention that Clarke and Emerscm ICES1] have 

been independently investigating the use of similar model building techniques for synchro- 

nization code synthesis. Their approach is, however, based on a branching time temporal 

logic and is oriented towards the synthesis of shared memory programs. 

Earlier work on the synthesis of synchronization code includes that of Griffiths [Gr75] 

and Habermann [Ha75]. Griffiths' specification language is rather low-level in the sense 

that it is procedural in nature. In Habermann's "path expressions", the specification lan- 

guage is regular expressions. This has the disadvantage of requiring a global description 

instead of a collection of independent requirements, as in PTL. Also, regular expressions 

cannot describe eventualities explicitly and in [Ha75] no attention is given to the problems 

of deadlock and starvation. 

Among later work on the subject one finds the work of Laventhal [La78], and the one 

of Ramamritham and Keller IRK81]. Here, the specification language is quite expresssive. 

In the former approach it is based on first-order predicate calculus with an ordering 

relation and in the latter on Temporal Logic. However, in both cases the synthesis method 

is rather informal and does not rely on a precise underlying theory. 
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