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1 Introduction

RAISE is an acronym for Rigorous Approach to Industrial Software Engineering
and is a product consisting of

e a software development method
e a formal specification language, RSL
e tools supporting the language as well as the method

e technology transfer material (documents, videos and courses)

This lecture note is a tutorial on the method. Tt is based on extracts of the RAISE
method book [9] and a tutorial by Chris George and myself. The development steps
in the harbour example in section 3 differ from the original ones in the book.

The language is described in [8], and the tools and technology transfer material
have been commercially available for some time.

In the rest of this introduction we first describe the RAISE background and
projects and then the objectives and contents of the tutorial.

1.1 The RAISE background

RAISE is the result of an ESPRIT project carried out during 1985 - 1990 by four
companies: DDC/CRI (DK), NBB/ABB/SYPRO (DK), STL/BNR (UK) and ICL
(UK).

The starting point for RAISE was the Vienna Development Method, VDM [2],
[12], which had had success in industry, but lacked a number of useful features.
Hence, the aim was to enhance VDM with structuring facilities, algebraic specifica-
tion, concurrency, formal semantics and computer-based tools.

Many languages and methods have been sources of inspiration for the enhance-
ments, e.g. Z [1], ML [14], Clear [3], ASL [16], ACT ONE [5], LARCH [10], OBJ
[6], CSP [11] and CCS [15].

1.2 The LaCoS continuation

Another ESPRIT project, called LaCoS — Large Scale Correct Systems Using For-
mal Methods — did follow up on RAISE. The aim of LaCoS was to use RAISE on
real industrial applications and, based upon the experience (see [4]) from these ap-
plications, to further evolve the RAISE product. The project was carried out in the
period 1990 - 1995 by the following companies: CRI (DK), CAP PROGRAMATOR
(DK), BNR Europe (UK), Lloyd’s Register (UK), Bull (F), MATRA Transport (F),
Inisel Espacio (E), Space Software Italia (I) and Technisystems (GR).y

1.3 Contents of lecture notes

First, in section 2, we give a short overview of the method, and then, in section 3
we illustrate the method by an example.
The reader is assumed to be familiar with the RAISE Specification Language.

2 Method overview

The aim of this section is to give a overview of the RAISE method.

First, in subsection 2.1, we state the characteristics of the RAISE development
method, and in subsection 2.2, we describe the RAISE implementation relation.
Then, in subsection 2.3, we describe different specification styles and their roles in
RAISE developments.



2.1 Characteristics of the RAISE method

The RAISE method is based on the stepwise development paradigm according to
which the software is developed in a number of steps.

Each step starts with a description of the software and produces a new descrip-
tion which is more detailed, see figure 1. The specifications are formulated in the
RAISE specification language, RSL. The first specification is typically very abstract.
After a number of steps in which design decisions are taken one may obtain a spec-
ification which is conveniently concrete to be (perhaps automatically) translated
into a programming language.

requirements
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Figure 1: Stepwise development

The stepwise development uses the invent-and-verify approach. That is, in each
step, first the new specification is invented and then it is verified that it conforms to
(is a correct development of) the previous specification. This approach is in contrast
to the transformational approach, known from for instance PROSPECTRA [13],
where the new specification is obtained from the old one by a transformation and
thereby is correct by construction.

The exact relationship (conformance) of the specifications in a development
step can be a user-defined relation or the pre-defined implementation (refinement)
relation, which is described in next section.

As a very important feature, the RSL structuring mechanisms, together with the
implementation or refinement relation allow for separate development. For instance,
assume that two modules, A and B, are to be developed by two different teams as
shown in figure 2. One team refines Ag to A,,, and another team refines By to B,,,
while still assuming only the properties of Ay which acts as an contract between
the two developments. When the developments by the two teams are complete
they integrate by using A,, instead of Ay in B,,, to form B,, ;1. Then B,,;; refines
Bo. Refinement is compositional: we can refine components separately and then
integrate to get a refinement as a whole.

Verification, or justification as it is called in RAISE, is rigorous (as the ‘R’ in
RAISE indicates). That is, the method allows the verification to be formal but does
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Figure 2: Separate development

not require it.

The postulation of a certain development relation is an example of a justification
condition. Other examples of conditions that we may want to state and justify are
theorems about modules and confidence conditions for modules. The latter are
conditions that ensure that there are no unintended use of language constructs like
division by zero or use of a function outside its precondition.

2.2 The implementation Relation

A class expression cel implements a class expression ce0 iff the following two con-
ditions are satisfied:

1. cel statically implements cef. That is, the visible part of the maximal signa-
ture of cel is included in the visible part of the maximal signature of cel.

2. Every theorem of cel is a theorem of cel.

For a further explanation, see the RSL book [8] sections 30.5-30.6.

2.3 Choice of specification style

For each module in a specification we have to decide whether it should be applicative
or imperative (i.e. without or with variables), and sequential or concurrent. This
gives four combinations:

applicative sequential: a “functional programming” style with no variables or
concurrency

imperative sequential: with variables, assignment, sequencing, loops, etc. but
with no concurrency

applicative conecurrent: functional programming but with concurrency

imperative concurrent: with variables, assignment, sequencing, loops, etc. and
concurrency

Applicative concurrent specifications are often inappropriate as the basis for pro-
gramming language implementations; the main processes are recursive in structure



and their continued execution will keep increasing the size of the call stack. So un-
less we are implementing in an applicative language that can overcome this problem
we shall need to use an imperative style; the use of variables enables the recursion
to be replaced by a loop. Hence there are only three major kinds of module that
we are usually concerned with and that we shall concentrate on in this tutorial:
applicative sequential, imperative sequential and imperative concurrent. We will
generally abbreviate these to applicative, imperative and concurrent.

Our experience is that of the three, the applicative style is the easiest both to
formulate and to reason about in justifications. It also turns out that one can easily
start with applicative specifications and develop them into imperative or concurrent
ones. For this reason we will adopt this as the basis for the method in the tutorial.

As well as distinguishing between applicative and imperative, sequential and
concurrent styles of specification we can also distinguish between abstract and con-
crete styles.

By abstractness we mean, in general, writing specifications to leave as many
alternative development routes open as possible. In other words, the fewer design
decisions we have taken in expressing a specification the more abstract it is. By
design decisions we mean things like

e deciding how to formulate a module using other modules

e deciding on a particular data structure

e deciding on a particular algorithm

e deciding what variables to use

e deciding what channels and patterns of communication to use

The opposite of “abstract” is “concrete”. The distinction between the two is not a
black and white one, but we can characterize modules in each of the three categories
as tending to be abstract or concrete.

abstract applicative modules will typically be algebraic (using abstract types,
i.e. sorts) and will use signatures and axioms rather than explicit definitions
for some or even all functions.

concrete applicative modules will typically be model-oriented (using concrete
types such as integers, lists, maps, etc.) and will contain more explicit function
definitions.

abstract imperative modules will not define variables but will use any in their
accesses and will use axioms.

concrete imperative modules will define variables and will contain more explicit
function definitions.

abstract concurrent modules will not define variables or channels but will use
any in their accesses and will use axioms.

concrete concurrent modules will define variables and channels and will contain
more explicit function definitions.

Again it must be stressed that these are relative rather than absolute distinctions.
A module may be abstract in some ways and concrete in others. And certainly a
system specification will contain modules in both varying styles and varying degrees
of abstractness. We will also use the term aziomatic to describe a style of value
definition in terms of signature and axiom.



We will adopt a naming convention in this tutorial that applicative modules will
be prefixed “A_”, imperative ones “I_” and concurrent ones “C_". We will also use
the convention that the most abstract modules will be suffixed “0”, more concrete
ones “1”, etc.

3 An example: a harbour system

This section shows the specification and development of a simple information system
for controlling entry and exits of ships to a harbour.

3.1 Aims of example

The example is a simple information system, with functions for changing the data,
functions for interrogating the data, and invariant properties that the data must
satisfy. There is no requirement for concurrent access.

3.2 Requirements

Ships arriving at a harbour have to be allocated berths in the harbour which are
vacant and which they will fit, or wait in a “pool” until a suitable berth is available.
Develop a system providing the following functions to allow the harbour master to
control the movement of ships in and out of the harbour:

arrive: to register the arrival of a ship
dock: to register a ship docking in a berth
leave: to register a ship leaving a berth

The harbour is illustrated in figure 3.

Figure 3: Harbour

We assume all ships will have to arrive and be waiting (perhaps only notionally)
in the pool before they can dock. So we can picture the state transitions for ships
in figure 4.
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Figure 4: State transitions for ships

3.3 Initial formulation

We first ask what are the objects of the system. Mentioned in the requirements are
ships, berths, pool and harbour. Tt also seems that the harbour is, for our purposes,
a fixed collection of berths, while the number of ships in the pool will vary. We can
show the entity relationships in figure 5.

berth

occupying berths

ship harbour

waiting pool
pool

mbox

Figure 5: Entity relationships for harbour

Then we try to identify attributes of objects and see which ones may change
dynamically. Ships have no attributes given in the requirements, except that they
may or may not fit a berth. We could invent an attribute like size but we don’t in
fact know if this is what determines fit. So we make a note that we will probably
need a function

fits : Ship x Berth — Bool

which we will leave underspecified, at least until we have discussed with the cus-
tomers what they want here.

Berths change in that they may be vacant at one time and contain a ship at
another time. Hence what we might term occupancy is a dynamic attribute.

The harbour seems to be a collection of berths. The members of this collection
are apparently fixed.

The pool of waiting ships will change dynamically as ships arrive and dock.

Note that there is often a choice of what we regard as attributes. We could
have a dynamic attribute location for a ship, which might be elsewhere, waiting
or docked in berth k. We could make ships into RSL imperative objects to model
this. Then we would have duplicate information if we also had dynamic berths and
pool of waiting ships. This would cause extra overhead in changing both objects
consistently. Some systems are designed this way — usually when the amount of
information is large, queries are common and need to be fast, and changes are less



common. However, it is generally a dangerous practice and for this system it seems
more appropriate to structure the system on the basis of the harbour and pool of
waiting ships, and to calculate the location of a ship if we need to.

Now we can consider what are the invariants (properties that are always true)
on the data. Possibilities are

e a ship can’t be in two places at once
e at most one ship can be in any one berth

e a ship can only be in a berth it fits

There are two ways to deal with such invariants. Where possible we build them
into the model. If the occupancy of a berth is modelled as vacant or occupied_by(s)
(where s is a ship), the model avoids any possibility of there being more than one
ship in any one berth, and so guarantees the second invariant. (There is also the
point that we shouldn’t try to dock a ship into a berth that is occupied, but this
is dealt with separately.) We have already decided to build in to the model the
fact that the collection of berths does not change, which could be considered an
invariant.
The first and third invariants suggest the (imperative) predicate

Vs : Ship -
~(waiting(s) A is_docked(s)) A
(V b1,b2 : Berth -
occupancy(bl) = occupied_by(s) A occupancy(b2) = occupied_by(s) =
bl = b2) A
(V b : T.Berth » occupancy(b) = T.occupied_by(s) = T .fits(s, b))

We expect in the initial specification to use an abstract type for the harbour. Having
identified an invariant property captured by a predicate consistent, say, then we
could use a subtype, as in

type
Harbour_base,
Harbour = {| h : Harbour_base « consistent(h) |}

This possibility can be adopted but it will require us to generate confidence con-
ditions for the concrete applicative specification (when we find some concrete type
for Harbour_base). Otherwise it is very easy to create a concrete applicative speci-
fication that passes the refinement check but does not maintain the invariant (and
is thus inconsistent). It is a general rule that subtypes of abstract types should
not be used unless confidence conditions of the concrete modules are generated and
carefully checked.

Instead, we will express as a collection of axioms the property that the state-
changing functions maintain the invariant, which makes the property more visible
and will force us to justify it when we justify refinement. This may not seem too
important in this example, but safety properties typically look like invariants.

For example, if arrive is a state-changing function and consistent a predicate
expressing the invariant, we can write the axiom

axiom
[arrive_consistent |
Vs : Ship -

arrive(s) post consistent() pre consistent() A can_arrive(s)

where can_arrive is a predicate expressing the precondition for arrive.
We now have some mental picture of the objects in the system.



3.4 Development Plan

We want to proceed from applicative to imperative. So the particular method we
will use is as follows:

e Define a scheme TYPES containing types and attributes for the non-dynamic
entities we have identified, and make a global object T for this.

e Define an abstract (algebraic) applicative module A_.HARBOURO containing
the top level functions, the axioms relating these and the “invariants”.

e Develop A . HARBOURO to a concrete (model-oriented) applicative module
A_HARBOURI.

e Develop A AHARBOURLI to a corresponding imperative module  HARBOURI.
e Consider any efficiency improvements we can make to I HARBOURI1 .
e Translate to the intended target language.

This outline of the method for a particular application we will call a development
plan. In practice such plans will include a number of other activities for documen-
tation, testing, quality assurance, etc. together with schedules, effort to be used,
and so on.

3.5 Type module

From our initial thoughts we formulate the module TYPES:

scheme TYPES =
class
type
Ship, Berth,
Occupancy == vacant | occupied_by(occupant : Ship)
value
fits : Ship x Berth — Bool
end

We then make a global object from TYPES:

object T : TYPES

3.6 Abstract applicative harbour

The method is in summary:

e Define the type of interest as a sort (Harbour).
e Define the signatures of the functions we need.

e Categorize these functions as generators if the type of interest (or a type
dependent on it) appears in their result types and as observers otherwise.
(We shall see that the imperative counterparts to generators are functions that
change (write to) the state. We have previously referred to these as “state-
changing”.) We find we have three generators: arrives, docks and leaves, and
we identify two observers: waiting and occupancy.



e Formulate preconditions for any partial functions. All three generators are
partial: there are situations where they cannot sensibly be applied. We there-
fore identify three functions (termed “guards”) to express their preconditions:
can_arrive, etc. All these guards are derived from (i.e. given explicit definitions
in terms of) the observers.

e Define a function (consistent) to express the invariant, making it another
derived observer.

e For each possible combination of non-derived observer and non-derived gen-
erator, define an axiom expressing the relation between them. We have three
non-derived generators and two non-derived observers, so we have six such
axioms. These axioms are called observer-generator axioms.

e Add axioms expressing the notion that the non-derived generators maintain
consistency. We have three such axioms.

This gives the abstract applicative module A HARBOURUO:

scheme
A_HARBOURO =

class
type Harbour

value
/* generators x/
arrives : T.Ship x Harbour = Harbour,

docks : T.Ship x T.Berth x Harbour = Harbour,
leaves : T.Ship x T.Berth x Harbour = Harbour,

/* observers x/
waiting : T.Ship x Harbour — Bool,

occupancy : T.Berth x Harbour — T.Occupancy,

/* derived */
consistent : Harbour — Bool
consistent(h) =
(
Vs : T.Ship -
~ (waiting(s, h) A is_docked(s, h)) A
(
V bl, b2 : T.Berth -
occupancy(bl, h) = T.occupied_by(s) A
occupancy(b2, h) = T.occupied_by(s) =
bl = b2
) A
(
V b : T.Berth -
occupancy(b, h) = T.occupied_by(s) = T.fits(s, b)
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is_docked : T.Ship x Harbour — Bool
is_docked(s, h) = (3 b : T.Berth « occupancy(b, h) = T.occupied_by(s)),

/* guards */
can_arrive : T.Ship x Harbour — Bool
can_arrive(s, h) = ~ waiting(s, h) A ~ is_.docked(s, h),

can_dock : T.Ship x T.Berth x Harbour — Bool
can_dock(s, b, h) =
waiting(s, h) A
~ is_docked(s, h) A occupancy(b, h) = T.vacant A T.fits(s, b),

can_leave : T.Ship x T.Berth x Harbour — Bool
can_leave(s, b, h) = occupancy(b, h) = T.occupied_by(s)

axiom
[ waiting arrives |
V h : Harbour, sl1, s2 : T.Ship -
waliting(s2, arrives(sl, h)) = s1 = s2 V waiting(s2, h)
pre can_arrive(sl, h),

[ waiting docks |
V h : Harbour, sl1, s2 : T.Ship, b : T.Berth -
walting(s2, docks(sl, b, h)) = sl # s2 A waiting(s2, h)
pre can_dock(sl, b, h),

[ waiting leaves ]
V h : Harbour, sl1, s2 : T.Ship, b : T.Berth -

waliting(s2, leaves(sl, b, h)) = waiting(s2, h) pre can_leave(sl, b, h),

[ occupancy _arrives |
V h : Harbour, s : T.Ship, b : T.Berth -

occupancy(b, arrives(s, h)) = occupancy(b, h) pre can_arrive(s, h),

[ occupancy _docks |
V h : Harbour, s : T.Ship, bl, b2 : T.Berth -
occupancy(b2, docks(s, b1, h)) =
if bl = b2 then T.occupied_by(s) else occupancy(b2, h) end
pre can_dock(s, bl, h),

[ occupancy _leaves ]
V h : Harbour, s : T.Ship, bl, b2 : T.Berth -
occupancy(b2, leaves(s, bl, h)) =
if bl = b2 then T.vacant else occupancy(b2, h) end
pre can_leave(s, bl, h),

[ consistent_arrives |
V h : Harbour, s : T.Ship -
arrives(s, h) as h’
post consistent(h’)
pre consistent(h) A can_arrive(s, h),

[ consistent_docks ]

V h : Harbour, s : T.Ship, b : T.Berth -
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docks(s, b, h) as h’
post consistent(h’)
pre consistent(h) A can_dock(s, b, h),

[ consistent_leaves |
V h : Harbour, s : T.Ship, b : T.Berth -
leaves(s, b, h) as h’
post consistent(h’)
pre consistent(h) A can_leave(s, b, h)
end
In practice it will typically take several iterations before such a specification can be
settled on. In particular, while the generators may be reasonably apparent from the
requirements (ships can arrive and dock, etc.) it is often much less clear what good
observers will be. Do we, for example, want one for the set of ships waiting? If one
tries to use this as an observer it should soon become apparent that it can easily be
defined as a derived observer from the simple observer waiting that we have used.
We have also omitted a constant of type Harbour, like empty. This is partly

because the requirements were silent about initial conditions. In practice the ability
to initialise (and perhaps reset) the system is a likely requirement and an empty
constant would be required. Adding empty (and making the consequent changes in
the remainder of the development) is left as an exercise for the reader.

3.6.1 Validation

Validating an initial specification means checking that it meets the requirements.
In practice there are usually some requirements that are not expressed in the initial
specification. These may be either

e requirements that cannot be expressed in RSL, the “non-functional” require-
ments, or

e requirements we have decided to defer because they are too detailed to include
yet

Both these kinds of requirements will give direction to the development because we
will need to deal with them at some point.

So validation means checking, for each requirement we can identify, that it is
either correctly reflected in the initial specification or can be dealt with at some
stage in the development plan. If we consider some of the requirements for the
system, we can record:

1  Ships can arrive and will be registered. A_HARBOURO
2  Ships can be docked when a suitable berth is freee. =~ A_HARBOURO
3 Docked ships can leave. A_HARBOURO
4  Ships can only be allocated to berths they fit. A_HARBOURO
5 Any ship will eventually get a berth. outside system
6 Any ship waiting more than 2 days will be flagged. deferred to ...

We could of course give more precise references to requirements we believe to be
met. Thus number 4 could have a reference to can_dock.

If we claim to meet a requirement but the claim is not immediate from the
specification, we can formulate the requirement as a theorem and justify it.

This process will sometimes raise issues that we have not dealt with properly,
causing us to rework the specification. We have assumed, for example, that the
actual choice of a ship to fill a vacant berth is outside the system: we just provide
the facilities for a user to make the choice. This may not be correct, or it may require
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a new function, to return, perhaps, a list of ships that can fit a berth, ordered by
date of arrival.

Making such a list of requirements will also give us the opportunity to update the
list as we do the development so that we can eventually show that all the deferred
requirements are met. Showing where and how requirements are met is commonly
called requirements tracing.

3.7 Concrete applicative harbour

A natural concrete type to use for Harbour is the product of a set of waiting ships
and a map from indices of berths to their occupancy.

Extending TYPES

We could then model the type Berth as equal to the subtype of integers from
min to maz, but it is more general to leave Berth as a sort and say there is a function
indz from Berth to this subtype: effectively the index of a berth is an attribute of
it. We then leave open the possibility of other attributes. Presumably there will
need to be some others (and some attributes of ships) to enable us to eventually
compute fits.

We therefore add the following definitions to the type module TYPES:

type
Index = {|i: Int « i > min A max > 1 |}
value
min, max : Int,
indx : Berth — Index
axiom
[index_not_empty ] max > min,
[ berths_indexable ]
¥ bl, b2 : Berth « indx(bl) = indx(b2) = bl = b2

The axiom berths_indezable ensures that indexes identify berths uniquely.

Note that we choose just to add these definitions to the type module directly
rather than develop it to a new module TYPES], say. This is the most convenient
way to develop type modules. As here, the extensions to them are typically con-
servative and making formal developments of them would be more effort than is
appropriate.

Developing the system module
From the abstract applicative module A_HARBOUR( we develop a concrete ap-
plicative module A_HARBOUR1 by the following method:

e Give a concrete definition for the type of interest.
e Give explicit definitions of constants and functions.

e Remove axioms.

This gives the concrete applicative module A_HARBOURI:

13



scheme
A HARBOURI =
class
type
Harbour =
T.Ship-set x
{| bs : T.Index s T.Occupancy =
(V idx : T.Index « idx € dom bs)

I}

value
/* generators x/
arrives : T.Ship x Harbour = Harbour
arrives(s, (ws, bs)) = (ws U {s}, bs) pre can_arrive(s, (ws, bs)),

docks : T.Ship x T.Berth x Harbour = Harbour
docks(s, b, (ws, bs)) =
(ws \ {s}, bs { [ T.indx(b) > T.occupied_by(s)])
pre can_dock(s, b, (ws, bs)),

leaves : T.Ship x T.Berth x Harbour = Harbour
leaves(s, b, (ws, bs)) =

(ws, bs { [ T.indx(b) + T.vacant])
pre can leave( b, (ws, bs)),

/* observers x/
waiting : T.Ship x Harbour — Bool
walting(s, (ws, bs)) = s € ws,

occupancy : T.Berth x Harbour — T.Occupancy
occupancy(b, (ws, bs)) = bs(T.indx(b)),

/* invariant */
consistent : Harbour — Bool

consistent((ws, bs)) =

Vs : T.Ship -
~ (waiting(s, (ws, bs)) A is_docked(s, (ws, bs))) A
(
V bl, b2 : T.Berth -
occupancy(bl, (ws, bs)) = T.occupied_by(s) A
occupancy(b2, (ws, bs)) = T.occupied_by(s) =
bl = b2
) A
(
V b : T.Berth -
occupancy(b, (ws, bs)) = T.occupied_by(s) = T.fits(s, b)
)

),
is_docked : T.Ship x Harbour — Bool

is_docked(s, (ws, bs)) =
(3 b : T.Berth » occupancy(b, (ws, bs)) = T.occupied_by(s)),

14



/* guards */
can_arrive : T.Ship x Harbour — Bool
can_arrive(s, (ws, bs)) =

~ waiting(s, (ws, bs)) A ~ is_docked(s, (ws, bs)),

can_dock : T.Ship x T.Berth x Harbour — Bool
can_dock(s, b, (ws, bs)) =

waiting(s, (ws, bs)) A

~ is_docked(s, (ws, bs)) A

occupancy(b, (ws, bs)) = T.vacant A T .fits(s, b),

can_leave : T.Ship x T.Berth x Harbour — Bool
can_leave(s, b, (ws, bs)) = occupancy(b, (ws, bs)) = T.occupied_by(s)
end

3.7.1 Verification

We formulate the development relation A_.HARBOURAO_1, which asserts that A_-
HARBOURI1 implements A HARBOURUO:

development relation [A_. HARBOURO.1] A HARBOUR1 < A_ HARBOURO0

A development relation is a named statement of a relation between modules. This
one takes the most simple form of the statement of an implementation relation (<)
between two versions of the harbour module.

Justification of this relation shows that the development step is correct. We
use a justification editor to first check the static implementation relation and to
generate implementation conditions to be proved (cf. section 2.2). In this case
(and typically) the implementation conditions are the axioms from the abstract
specification, A HARBOURAO. Each of the implementation conditions has as context
the more concrete specification, A HARBOURI.

For instance, we get from the axiom waiting_arrives the implementation condi-
tion

V h : Harbour, sl1, s2 : T.Ship -
walting(s2, arrives(sl, h)) = s1 = s2 V waiting(s2, h) pre can_arrive(sl, h)

The justification of this condition is done by a series of steps in which RSL proof
rules are applied transforming the condition to new conditions whose truth ensure
the truth of the original condition. The conditions, also called goals, are enclosed by
the brackets | and j, and the names of the applied proof rules are written between
the goals.

An example of a proof rule is

[is_annihilation ]
e =e ~ true

Tt has the name is_annihilation and states that any value expression of the form e =
e is equivalent to true. This rule can be used in a proof to replace a value expression
e = e with true or vice versa. In the handbook [7] there is a collection of proof rules
for RSL. From the definitions and axioms in the context of a justification additional
proof rules can be derived. These rules are called contezt rules. The context of the
condition above, A HARBOURI, gives, for example, unfold rules for functions with
defined bodies. For instance
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[ waiting def ]
waiting(s, (ws, bs)) ~ s € ws

A justification of the condition is

LY h : Harbour, s1, s2 : T.Ship -
walting(s2, arrives(sl, h)) = s1 = s2 V waiting(s2, h) pre can_arrive(sl, h),
all name _change :
LV (ws, bs) : Harbour, s1, s2 : T.Ship «
waiting(s2, arrives(sl, (ws, bs))) = sl = s2 V waiting(s2, (ws, bs)) pre can_arrive(sl, (ws, bs)),
all_assumption_inf :
Lwaiting(s2, arrives(sl, (ws, bs))) = sl = s2 V waiting(s2, (ws, bs)) pre can_arrive(sl, (ws, bs)),
pre_deduction_inf :
[assump | can_arrive(sl, (ws, bs)) F
Lwaiting(s2, arrives(sl, (ws, bs))) = sl = s2 V waiting(s2, (ws, bs)),
arrives_def :
Lwaiting(s2, (ws U {s1}, bs)) = sl = s2 V waiting(s2, (ws, bs))
since
Lcan_arrive(sl, (ws, bs))
assump :
Lirue,
qed
end
waiting def :
1s2 € ws U {s1} = sl = s2 V waiting(s2, (ws, bs))
waiting def :
1s2 € ws U {sl} =sl =s2Vs2¢€ ws,
isin_union :
1s2€wsVs2e{sl} =sl=52Vs2cws,
isin_singleton :
Ls2 € ws Vs2 =35l
or_commutativity :
1s2 =s81Vs2€ws=sl=s52Vs2¢cws,
is_annihilation :

sl =82 Vs2 € ws

Lirue,
qed

In the first step we rename the binding to match better the context rules like
waiting_def. In the second step we assume we have a fixed but arbitrary harbour
(ws, bs) and fixed but arbitrary ships s/ and s2. In the third step we remove
the precondition from the equivalence and instead assume that it is true. We give
the assumption the name assump so that we can refer to it later in the proof. In
the fourth step we unfold the application of the function arrives (remembering we
are in the context of A . HARBOURI1). This gives a new goal with the application
replaced with the body of the function definition, with actual parameters replacing
the formal ones. As the function has a precondition it also gives a side condition
(can_arrive(sl, (ws, bs))) which expresses that the precondition is satisfied. The
proof of the side condition is placed between the keywords since and end. The
side condition is proved using the assumption assump. In the fifth and sixth steps
we unfold the applications of the function waiting. In the next steps we use various
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proofrules for sets, and finally, in the last step, we apply the rule is_annihilation by
which the proof is completed.

3.8 Concrete imperative harbour

From the concrete applicative module A_. HARBOUR1 we develop a corresponding
concrete imperative module . HARBOUR1 by the following method:

e Declare variables which can contain information of the concrete type of inter-
est.

e Define imperative functions which correspond to the applicative ones. They
have the same names. Generators have access write any and observers have
access read any. Occurrences of the type of interest are removed from param-
eter and result types (and replaced by Unit if there are no other components
in a parameter or result type).

e Define the bodies of the functions by adapting the applicative versions to use
the imperative functions corresponding to the applicative ones.

e Remove the declaration of the type of interest (if not used elsewhere).

This gives the concrete imperative module I HARBOURI:

scheme
I_HARBOURI1 =
class
variable
ws : T.Ship-set,
bs :

{| bs : T.Index s T.Occupancy « (V¥ idx : T.Index « idx € dom bs) |}

value
/* generators x/
arrives : T.Ship = write any Unit
arrives(s) = ws := ws U {s} pre can_arrive(s),

docks : T.Ship x T.Berth = write any Unit

docks(s, b) =
ws := ws \ {s}; bs := bs | [ T.indx(b) + T.occupied_by(s)]
pre can_dock(s, b),

leaves : T.Ship x T.Berth = write any Unit
leaves(s, b) = bs := bs { [ T.indx(b) > T.vacant] pre can_leave(s, b),

/* observers x/
waiting : T.Ship — read any Bool
waiting(s) = s € ws,

occupancy : T.Berth — read any T.Occupancy
occupancy(b) = bs(T.indx(b)),

/* invariant */
consistent : Unit — read any Bool
consistent() =

(
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Vs : T.Ship -
~ (waiting(s) A is_docked(s)) A

V bl, b2 : T.Berth -
occupancy(bl) = T.occupied_by(s) A
occupancy(b2) = T.occupied_by(s) =
bl = b2
) A
(V b : T.Berth » occupancy(b) = T.occupied_by(s) = T.fits(s, b))

),

is_docked : T.Ship — read any Bool
is_docked(s) = (3 b : T.Berth = occupancy(b) = T.occupied_by(s)),

/* guards */
can_arrive : T.Ship — read any Bool
can_arrive(s) = ~ waiting(s) A ~ is_docked(s),

can_dock : T.Ship x T.Berth — read any Bool
can_dock(s, b) =
waiting(s) A ~ is_docked(s) A occupancy(b) = T.vacant A T.fits(s, b),

can_leave : T.Ship x T.Berth — read any Bool
can_leave(s, b) = occupancy(b) = T.occupied_by(s)
end

3.8.1 Verification

Since this development step was from applicative to imperative, we need to decide
what level of assurance we need for correctness. We can either

e check that the method for this transition has been followed correctly, or

e formulate the imperative axioms corresponding to the applicative axioms from

A_HARBOURO and justify them for . HARBOURI1

Both of these are verifications since they check on the correctness of the development
process. The first is informal and is almost certainly all that is necessary for this
fairly straightforward development. The second is formal and can be done if we
have any doubts or require the highest level of assurance of correctness.

3.9 Further development

There are a few issues left to be resolved:

e The definition of is_docked still involves an existential quantifier and is prob-
ably not translatable yet. So we formulate a development of . HARBOURI,
T_HARBOURZ2, in which is_docked is defined by

value
is_docked : T.Ship — read any Bool
is_docked(s) =
local variable found : Bool := false, indx : T.Index := T.min in
while ~ found A indx < T.max do
found := bs(indx) = T.occupied_by(s) ; indx := indx + 1

end ;
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found
end

We can then formulate and justify the refinement relation between T HAR-

BOUR2 and I_HARBOURI1 to check this is correct.

We have still left unspecified the types Ship and Berth and the values min,
maz, fits and indz; all defined in TYPES. In practice we should either have
been able to define all of these by getting more detailed requirements, or
we could regard them as system parameters to be instantiated for particular
harbours.

When we are in a position to make definite choices for these types and values
we can define a new module, TYPES1, say. We then justify that TYPES1
refines TYPES. If it does, we can replace objeet T : TYPES with objeet T
: TYPES1. This is left as an exercise for the reader.
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