
Lecture Notes onThe RAISE Development MethodAnne HaxthausenApril 1999Contents1 Introduction 21.1 The RAISE background . 21.2 The LaCoS continuation . 21.3 Contents of lecture notes . 22 Method overview 22.1 Characteristics of the RAISE method 32.2 The implementation Relation . 42.3 Choice of speci�cation style . 43 An example: a harbour system 63.1 Aims of example . 63.2 Requirements . 63.3 Initial formulation . 73.4 Development Plan . 93.5 Type module . 93.6 Abstract applicative harbour . 93.6.1 Validation . 123.7 Concrete applicative harbour . 133.7.1 Veri�cation . 153.8 Concrete imperative harbour . 173.8.1 Veri�cation . 183.9 Further development . 18
1

1 IntroductionRAISE is an acronym for Rigorous Approach to Industrial Software Engineeringand is a product consisting of� a software development method� a formal speci�cation language, RSL� tools supporting the language as well as the method� technology transfer material (documents, videos and courses)This lecture note is a tutorial on the method. It is based on extracts of the RAISEmethod book [9] and a tutorial by Chris George and myself. The development stepsin the harbour example in section 3 di�er from the original ones in the book.The language is described in [8], and the tools and technology transfer materialhave been commercially available for some time.In the rest of this introduction we �rst describe the RAISE background andprojects and then the objectives and contents of the tutorial.1.1 The RAISE backgroundRAISE is the result of an ESPRIT project carried out during 1985 - 1990 by fourcompanies: DDC/CRI (DK), NBB/ABB/SYPRO (DK), STL/BNR (UK) and ICL(UK).The starting point for RAISE was the Vienna Development Method, VDM [2],[12], which had had success in industry, but lacked a number of useful features.Hence, the aim was to enhance VDM with structuring facilities, algebraic speci�ca-tion, concurrency, formal semantics and computer-based tools.Many languages and methods have been sources of inspiration for the enhance-ments, e.g. Z [1], ML [14], Clear [3], ASL [16], ACT ONE [5], LARCH [10], OBJ[6], CSP [11] and CCS [15].1.2 The LaCoS continuationAnother ESPRIT project, called LaCoS | Large Scale Correct Systems Using For-mal Methods | did follow up on RAISE. The aim of LaCoS was to use RAISE onreal industrial applications and, based upon the experience (see [4]) from these ap-plications, to further evolve the RAISE product. The project was carried out in theperiod 1990 - 1995 by the following companies: CRI (DK), CAP PROGRAMATOR(DK), BNR Europe (UK), Lloyd's Register (UK), Bull (F), MATRA Transport (F),Inisel Espacio (E), Space Software Italia (I) and Technisystems (GR).y1.3 Contents of lecture notesFirst, in section 2, we give a short overview of the method, and then, in section 3we illustrate the method by an example.The reader is assumed to be familiar with the RAISE Speci�cation Language.2 Method overviewThe aim of this section is to give a overview of the RAISE method.First, in subsection 2.1, we state the characteristics of the RAISE developmentmethod, and in subsection 2.2, we describe the RAISE implementation relation.Then, in subsection 2.3, we describe di�erent speci�cation styles and their roles inRAISE developments. 2

2.1 Characteristics of the RAISE methodThe RAISE method is based on the stepwise development paradigm according towhich the software is developed in a number of steps.Each step starts with a description of the software and produces a new descrip-tion which is more detailed, see �gure 1. The speci�cations are formulated in theRAISE speci�cation language, RSL. The �rst speci�cation is typically very abstract.After a number of steps in which design decisions are taken one may obtain a spec-i�cation which is conveniently concrete to be (perhaps automatically) translatedinto a programming language.
TranslationDesignDesignInitial speci�cation

?implementation
??requirementsspeci�cation0speci�cation1speci�cationn?Figure 1: Stepwise developmentThe stepwise development uses the invent-and-verify approach. That is, in eachstep, �rst the new speci�cation is invented and then it is veri�ed that it conforms to(is a correct development of) the previous speci�cation. This approach is in contrastto the transformational approach, known from for instance PROSPECTRA [13],where the new speci�cation is obtained from the old one by a transformation andthereby is correct by construction.The exact relationship (conformance) of the speci�cations in a developmentstep can be a user-de�ned relation or the pre-de�ned implementation (re�nement)relation, which is described in next section.As a very important feature, the RSL structuring mechanisms, together with theimplementation or re�nement relation allow for separate development. For instance,assume that two modules, A and B, are to be developed by two di�erent teams asshown in �gure 2. One team re�nes A0 to Am, and another team re�nes B0 to Bn,while still assuming only the properties of A0 which acts as an contract betweenthe two developments. When the developments by the two teams are completethey integrate by using Am instead of A0 in Bn, to form Bn+1. Then Bn+1 re�nesB0. Re�nement is compositional: we can re�ne components separately and thenintegrate to get a re�nement as a whole.Veri�cation, or justi�cation as it is called in RAISE, is rigorous (as the `R' inRAISE indicates). That is, the method allows the veri�cation to be formal but does3

Development of A Development of BAm = :::?A0 = ::: IntegrationBn+1 = ::: Am :::??B0 = ::: A0 :::Bn = ::: A0 :::Figure 2: Separate developmentnot require it.The postulation of a certain development relation is an example of a justi�cationcondition. Other examples of conditions that we may want to state and justify aretheorems about modules and con�dence conditions for modules. The latter areconditions that ensure that there are no unintended use of language constructs likedivision by zero or use of a function outside its precondition.2.2 The implementation RelationA class expression ce1 implements a class expression ce0 i� the following two con-ditions are satis�ed:1. ce1 statically implements ce0. That is, the visible part of the maximal signa-ture of ce0 is included in the visible part of the maximal signature of ce1.2. Every theorem of ce0 is a theorem of ce1.For a further explanation, see the RSL book [8] sections 30.5-30.6.2.3 Choice of speci�cation styleFor each module in a speci�cation we have to decide whether it should be applicativeor imperative (i.e. without or with variables), and sequential or concurrent. Thisgives four combinations:applicative sequential: a \functional programming" style with no variables orconcurrencyimperative sequential: with variables, assignment, sequencing, loops, etc. butwith no concurrencyapplicative concurrent: functional programming but with concurrencyimperative concurrent: with variables, assignment, sequencing, loops, etc. andconcurrencyApplicative concurrent speci�cations are often inappropriate as the basis for pro-gramming language implementations; the main processes are recursive in structure4

and their continued execution will keep increasing the size of the call stack. So un-less we are implementing in an applicative language that can overcome this problemwe shall need to use an imperative style; the use of variables enables the recursionto be replaced by a loop. Hence there are only three major kinds of module thatwe are usually concerned with and that we shall concentrate on in this tutorial:applicative sequential, imperative sequential and imperative concurrent. We willgenerally abbreviate these to applicative, imperative and concurrent.Our experience is that of the three, the applicative style is the easiest both toformulate and to reason about in justi�cations. It also turns out that one can easilystart with applicative speci�cations and develop them into imperative or concurrentones. For this reason we will adopt this as the basis for the method in the tutorial.As well as distinguishing between applicative and imperative, sequential andconcurrent styles of speci�cation we can also distinguish between abstract and con-crete styles.By abstractness we mean, in general, writing speci�cations to leave as manyalternative development routes open as possible. In other words, the fewer designdecisions we have taken in expressing a speci�cation the more abstract it is. Bydesign decisions we mean things like� deciding how to formulate a module using other modules� deciding on a particular data structure� deciding on a particular algorithm� deciding what variables to use� deciding what channels and patterns of communication to useThe opposite of \abstract" is \concrete". The distinction between the two is not ablack and white one, but we can characterize modules in each of the three categoriesas tending to be abstract or concrete.abstract applicative modules will typically be algebraic (using abstract types,i.e. sorts) and will use signatures and axioms rather than explicit de�nitionsfor some or even all functions.concrete applicative modules will typically be model-oriented (using concretetypes such as integers, lists, maps, etc.) and will contain more explicit functionde�nitions.abstract imperative modules will not de�ne variables but will use any in theiraccesses and will use axioms.concrete imperative modules will de�ne variables and will contain more explicitfunction de�nitions.abstract concurrent modules will not de�ne variables or channels but will useany in their accesses and will use axioms.concrete concurrent modules will de�ne variables and channels and will containmore explicit function de�nitions.Again it must be stressed that these are relative rather than absolute distinctions.A module may be abstract in some ways and concrete in others. And certainly asystem speci�cation will contain modules in both varying styles and varying degreesof abstractness. We will also use the term axiomatic to describe a style of valuede�nition in terms of signature and axiom.5

We will adopt a naming convention in this tutorial that applicative modules willbe pre�xed \A ", imperative ones \I " and concurrent ones \C ". We will also usethe convention that the most abstract modules will be su�xed \0", more concreteones \1", etc.3 An example: a harbour systemThis section shows the speci�cation and development of a simple information systemfor controlling entry and exits of ships to a harbour.3.1 Aims of exampleThe example is a simple information system, with functions for changing the data,functions for interrogating the data, and invariant properties that the data mustsatisfy. There is no requirement for concurrent access.3.2 RequirementsShips arriving at a harbour have to be allocated berths in the harbour which arevacant and which they will �t, or wait in a \pool" until a suitable berth is available.Develop a system providing the following functions to allow the harbour master tocontrol the movement of ships in and out of the harbour:arrive: to register the arrival of a shipdock: to register a ship docking in a berthleave: to register a ship leaving a berthThe harbour is illustrated in �gure 3.
Figure 3: HarbourWe assume all ships will have to arrive and be waiting (perhaps only notionally)in the pool before they can dock. So we can picture the state transitions for shipsin �gure 4. 6

dock leave
docked

arrive
waitingFigure 4: State transitions for ships3.3 Initial formulationWe �rst ask what are the objects of the system. Mentioned in the requirements areships, berths, pool and harbour. It also seems that the harbour is, for our purposes,a �xed collection of berths, while the number of ships in the pool will vary. We canshow the entity relationships in �gure 5.

mbox pool

occupying berths

berth

ship harbour

waiting poolFigure 5: Entity relationships for harbourThen we try to identify attributes of objects and see which ones may changedynamically. Ships have no attributes given in the requirements, except that theymay or may not �t a berth. We could invent an attribute like size but we don't infact know if this is what determines �t. So we make a note that we will probablyneed a function�ts : Ship � Berth ! Boolwhich we will leave underspeci�ed, at least until we have discussed with the cus-tomers what they want here.Berths change in that they may be vacant at one time and contain a ship atanother time. Hence what we might term occupancy is a dynamic attribute.The harbour seems to be a collection of berths. The members of this collectionare apparently �xed.The pool of waiting ships will change dynamically as ships arrive and dock.Note that there is often a choice of what we regard as attributes. We couldhave a dynamic attribute location for a ship, which might be elsewhere, waitingor docked in berth k. We could make ships into RSL imperative objects to modelthis. Then we would have duplicate information if we also had dynamic berths andpool of waiting ships. This would cause extra overhead in changing both objectsconsistently. Some systems are designed this way | usually when the amount ofinformation is large, queries are common and need to be fast, and changes are less7

common. However, it is generally a dangerous practice and for this system it seemsmore appropriate to structure the system on the basis of the harbour and pool ofwaiting ships, and to calculate the location of a ship if we need to.Now we can consider what are the invariants (properties that are always true)on the data. Possibilities are� a ship can't be in two places at once� at most one ship can be in any one berth� a ship can only be in a berth it �tsThere are two ways to deal with such invariants. Where possible we build theminto the model. If the occupancy of a berth is modelled as vacant or occupied by(s)(where s is a ship), the model avoids any possibility of there being more than oneship in any one berth, and so guarantees the second invariant. (There is also thepoint that we shouldn't try to dock a ship into a berth that is occupied, but thisis dealt with separately.) We have already decided to build in to the model thefact that the collection of berths does not change, which could be considered aninvariant.The �rst and third invariants suggest the (imperative) predicate8 s : Ship ��(waiting(s) ^ is docked(s)) ^(8 b1,b2 : Berth �occupancy(b1) = occupied by(s) ^ occupancy(b2) = occupied by(s))b1 = b2) ^(8 b : T.Berth � occupancy(b) = T.occupied by(s)) T.�ts(s, b))We expect in the initial speci�cation to use an abstract type for the harbour. Havingidenti�ed an invariant property captured by a predicate consistent, say, then wecould use a subtype, as intypeHarbour base,Harbour = fj h : Harbour base � consistent(h) jgThis possibility can be adopted but it will require us to generate con�dence con-ditions for the concrete applicative speci�cation (when we �nd some concrete typefor Harbour base). Otherwise it is very easy to create a concrete applicative speci-�cation that passes the re�nement check but does not maintain the invariant (andis thus inconsistent). It is a general rule that subtypes of abstract types shouldnot be used unless con�dence conditions of the concrete modules are generated andcarefully checked.Instead, we will express as a collection of axioms the property that the state-changing functions maintain the invariant, which makes the property more visibleand will force us to justify it when we justify re�nement. This may not seem tooimportant in this example, but safety properties typically look like invariants.For example, if arrive is a state-changing function and consistent a predicateexpressing the invariant, we can write the axiomaxiom[arrive consistent]8 s : Ship �arrive(s) post consistent() pre consistent() ^ can arrive(s)where can arrive is a predicate expressing the precondition for arrive.We now have some mental picture of the objects in the system.8

3.4 Development PlanWe want to proceed from applicative to imperative. So the particular method wewill use is as follows:� De�ne a scheme TYPES containing types and attributes for the non-dynamicentities we have identi�ed, and make a global object T for this.� De�ne an abstract (algebraic) applicative module A HARBOUR0 containingthe top level functions, the axioms relating these and the \invariants".� Develop A HARBOUR0 to a concrete (model-oriented) applicative moduleA HARBOUR1.� Develop A HARBOUR1 to a corresponding imperativemodule I HARBOUR1.� Consider any e�ciency improvements we can make to I HARBOUR1 .� Translate to the intended target language.This outline of the method for a particular application we will call a developmentplan. In practice such plans will include a number of other activities for documen-tation, testing, quality assurance, etc. together with schedules, e�ort to be used,and so on.3.5 Type moduleFrom our initial thoughts we formulate the module TYPES:scheme TYPES =classtypeShip, Berth,Occupancy == vacant j occupied by(occupant : Ship)value�ts : Ship � Berth ! BoolendWe then make a global object from TYPES:object T : TYPES3.6 Abstract applicative harbourThe method is in summary:� De�ne the type of interest as a sort (Harbour).� De�ne the signatures of the functions we need.� Categorize these functions as generators if the type of interest (or a typedependent on it) appears in their result types and as observers otherwise.(We shall see that the imperative counterparts to generators are functions thatchange (write to) the state. We have previously referred to these as \state-changing".) We �nd we have three generators: arrives, docks and leaves, andwe identify two observers: waiting and occupancy.9

� Formulate preconditions for any partial functions. All three generators arepartial: there are situations where they cannot sensibly be applied. We there-fore identify three functions (termed \guards") to express their preconditions:can arrive, etc. All these guards are derived from (i.e. given explicit de�nitionsin terms of) the observers.� De�ne a function (consistent) to express the invariant, making it anotherderived observer.� For each possible combination of non-derived observer and non-derived gen-erator, de�ne an axiom expressing the relation between them. We have threenon-derived generators and two non-derived observers, so we have six suchaxioms. These axioms are called observer-generator axioms.� Add axioms expressing the notion that the non-derived generators maintainconsistency. We have three such axioms.This gives the abstract applicative module A HARBOUR0:schemeA HARBOUR0 =classtype Harbourvalue=� generators �=arrives : T:Ship � Harbour �! Harbour;docks : T:Ship � T:Berth � Harbour �! Harbour;leaves : T:Ship � T:Berth � Harbour �! Harbour;=� observers �=waiting : T:Ship � Harbour ! Bool;occupancy : T:Berth � Harbour ! T:Occupancy;=� derived �=consistent : Harbour ! Boolconsistent(h) �(8 s : T:Ship �� (waiting(s; h) ^ is docked(s; h)) ^(8 b1; b2 : T:Berth �occupancy(b1; h) = T:occupied by(s) ^occupancy(b2; h) = T:occupied by(s))b1 = b2) ^(8 b : T:Berth �occupancy(b; h) = T:occupied by(s)) T:�ts(s; b))); 10

is docked : T:Ship � Harbour ! Boolis docked(s; h) � (9 b : T:Berth � occupancy(b; h) = T:occupied by(s));=� guards �=can arrive : T:Ship � Harbour ! Boolcan arrive(s; h) � � waiting(s; h) ^ � is docked(s; h);can dock : T:Ship � T:Berth � Harbour ! Boolcan dock(s; b; h) �waiting(s; h) ^� is docked(s; h) ^ occupancy(b; h) = T:vacant ^ T:�ts(s; b);can leave : T:Ship � T:Berth � Harbour ! Boolcan leave(s; b; h) � occupancy(b; h) = T:occupied by(s)axiom[waiting arrives]8 h : Harbour; s1; s2 : T:Ship �waiting(s2; arrives(s1; h)) � s1 = s2 _ waiting(s2; h)pre can arrive(s1; h);[waiting docks]8 h : Harbour; s1; s2 : T:Ship; b : T:Berth �waiting(s2; docks(s1; b; h)) � s1 6= s2 ^ waiting(s2; h)pre can dock(s1; b; h);[waiting leaves]8 h : Harbour; s1; s2 : T:Ship; b : T:Berth �waiting(s2; leaves(s1; b; h)) � waiting(s2; h) pre can leave(s1; b; h);[occupancy arrives]8 h : Harbour; s : T:Ship; b : T:Berth �occupancy(b; arrives(s; h)) � occupancy(b; h) pre can arrive(s; h);[occupancy docks]8 h : Harbour; s : T:Ship; b1; b2 : T:Berth �occupancy(b2; docks(s; b1; h)) �if b1 = b2 then T:occupied by(s) else occupancy(b2; h) endpre can dock(s; b1; h);[occupancy leaves]8 h : Harbour; s : T:Ship; b1; b2 : T:Berth �occupancy(b2; leaves(s; b1; h)) �if b1 = b2 then T:vacant else occupancy(b2; h) endpre can leave(s; b1; h);[consistent arrives]8 h : Harbour; s : T:Ship �arrives(s; h) as h0post consistent(h0)pre consistent(h) ^ can arrive(s; h);[consistent docks]8 h : Harbour; s : T:Ship; b : T:Berth �11

docks(s; b; h) as h0post consistent(h0)pre consistent(h) ^ can dock(s; b; h);[consistent leaves]8 h : Harbour; s : T:Ship; b : T:Berth �leaves(s; b; h) as h0post consistent(h0)pre consistent(h) ^ can leave(s; b; h)endIn practice it will typically take several iterations before such a speci�cation can besettled on. In particular, while the generators may be reasonably apparent from therequirements (ships can arrive and dock, etc.) it is often much less clear what goodobservers will be. Do we, for example, want one for the set of ships waiting? If onetries to use this as an observer it should soon become apparent that it can easily bede�ned as a derived observer from the simple observer waiting that we have used.We have also omitted a constant of type Harbour, like empty. This is partlybecause the requirements were silent about initial conditions. In practice the abilityto initialise (and perhaps reset) the system is a likely requirement and an emptyconstant would be required. Adding empty (and making the consequent changes inthe remainder of the development) is left as an exercise for the reader.3.6.1 ValidationValidating an initial speci�cation means checking that it meets the requirements.In practice there are usually some requirements that are not expressed in the initialspeci�cation. These may be either� requirements that cannot be expressed in RSL, the \non-functional" require-ments, or� requirements we have decided to defer because they are too detailed to includeyetBoth these kinds of requirements will give direction to the development because wewill need to deal with them at some point.So validation means checking, for each requirement we can identify, that it iseither correctly reected in the initial speci�cation or can be dealt with at somestage in the development plan. If we consider some of the requirements for thesystem, we can record:1 Ships can arrive and will be registered. A HARBOUR02 Ships can be docked when a suitable berth is free. A HARBOUR03 Docked ships can leave. A HARBOUR04 Ships can only be allocated to berths they �t. A HARBOUR05 Any ship will eventually get a berth. outside system6 Any ship waiting more than 2 days will be agged. deferred to ...We could of course give more precise references to requirements we believe to bemet. Thus number 4 could have a reference to can dock.If we claim to meet a requirement but the claim is not immediate from thespeci�cation, we can formulate the requirement as a theorem and justify it.This process will sometimes raise issues that we have not dealt with properly,causing us to rework the speci�cation. We have assumed, for example, that theactual choice of a ship to �ll a vacant berth is outside the system: we just providethe facilities for a user to make the choice. This may not be correct, or it may require12

a new function, to return, perhaps, a list of ships that can �t a berth, ordered bydate of arrival.Making such a list of requirements will also give us the opportunity to update thelist as we do the development so that we can eventually show that all the deferredrequirements are met. Showing where and how requirements are met is commonlycalled requirements tracing.3.7 Concrete applicative harbourA natural concrete type to use for Harbour is the product of a set of waiting shipsand a map from indices of berths to their occupancy.Extending TYPESWe could then model the type Berth as equal to the subtype of integers frommin tomax, but it is more general to leave Berth as a sort and say there is a functionindx from Berth to this subtype: e�ectively the index of a berth is an attribute ofit. We then leave open the possibility of other attributes. Presumably there willneed to be some others (and some attributes of ships) to enable us to eventuallycompute �ts.We therefore add the following de�nitions to the type module TYPES:typeIndex = fj i : Int � i � min ^ max � i jgvaluemin, max : Int,indx : Berth ! Indexaxiom[index not empty] max � min,[berths indexable]8 b1, b2 : Berth � indx(b1) = indx(b2)) b1 = b2The axiom berths indexable ensures that indexes identify berths uniquely.Note that we choose just to add these de�nitions to the type module directlyrather than develop it to a new module TYPES1, say. This is the most convenientway to develop type modules. As here, the extensions to them are typically con-servative and making formal developments of them would be more e�ort than isappropriate.Developing the system moduleFrom the abstract applicative module A HARBOUR0 we develop a concrete ap-plicative module A HARBOUR1 by the following method:� Give a concrete de�nition for the type of interest.� Give explicit de�nitions of constants and functions.� Remove axioms.This gives the concrete applicative module A HARBOUR1:13

schemeA HARBOUR1 =classtypeHarbour =T:Ship-set �fj bs : T:Index !m T:Occupancy �(8 idx : T:Index � idx 2 dom bs)jgvalue=� generators �=arrives : T:Ship � Harbour �! Harbourarrives(s; (ws; bs)) � (ws [fsg; bs) pre can arrive(s; (ws; bs));docks : T:Ship � T:Berth � Harbour �! Harbourdocks(s; b; (ws; bs)) �(ws n fsg; bs y [T:indx(b) 7! T:occupied by(s)])pre can dock(s; b; (ws; bs));leaves : T:Ship � T:Berth � Harbour �! Harbourleaves(s; b; (ws; bs)) �(ws; bs y [T:indx(b) 7! T:vacant])pre can leave(s; b; (ws; bs));=� observers �=waiting : T:Ship � Harbour ! Boolwaiting(s; (ws; bs)) � s 2 ws;occupancy : T:Berth � Harbour ! T:Occupancyoccupancy(b; (ws; bs)) � bs(T:indx(b));=� invariant �=consistent : Harbour ! Boolconsistent((ws; bs)) �(8 s : T:Ship �� (waiting(s; (ws; bs)) ^ is docked(s; (ws; bs))) ^(8 b1; b2 : T:Berth �occupancy(b1; (ws; bs)) = T:occupied by(s) ^occupancy(b2; (ws; bs)) = T:occupied by(s))b1 = b2) ^(8 b : T:Berth �occupancy(b; (ws; bs)) = T:occupied by(s)) T:�ts(s; b)));is docked : T:Ship � Harbour ! Boolis docked(s; (ws; bs)) �(9 b : T:Berth � occupancy(b; (ws; bs)) = T:occupied by(s));14

=� guards �=can arrive : T:Ship � Harbour ! Boolcan arrive(s; (ws; bs)) �� waiting(s; (ws; bs)) ^ � is docked(s; (ws; bs));can dock : T:Ship � T:Berth � Harbour ! Boolcan dock(s; b; (ws; bs)) �waiting(s; (ws; bs)) ^� is docked(s; (ws; bs)) ^occupancy(b; (ws; bs)) = T:vacant ^ T:�ts(s; b);can leave : T:Ship � T:Berth � Harbour ! Boolcan leave(s; b; (ws; bs)) � occupancy(b; (ws; bs)) = T:occupied by(s)end3.7.1 Veri�cationWe formulate the development relation A HARBOUR0 1, which asserts that A -HARBOUR1 implements A HARBOUR0:development relation [A HARBOUR0 1] A HARBOUR1 � A HARBOUR0A development relation is a named statement of a relation between modules. Thisone takes the most simple form of the statement of an implementation relation (�)between two versions of the harbour module.Justi�cation of this relation shows that the development step is correct. Weuse a justi�cation editor to �rst check the static implementation relation and togenerate implementation conditions to be proved (cf. section 2.2). In this case(and typically) the implementation conditions are the axioms from the abstractspeci�cation, A HARBOUR0. Each of the implementation conditions has as contextthe more concrete speci�cation, A HARBOUR1.For instance, we get from the axiom waiting arrives the implementation condi-tion8 h : Harbour, s1, s2 : T.Ship �waiting(s2, arrives(s1, h)) � s1 = s2 _ waiting(s2, h) pre can arrive(s1, h)The justi�cation of this condition is done by a series of steps in which RSL proofrules are applied transforming the condition to new conditions whose truth ensurethe truth of the original condition. The conditions, also called goals, are enclosed bythe brackets and , and the names of the applied proof rules are written betweenthe goals.An example of a proof rule is[is annihilation]e � e ' trueIt has the name is annihilation and states that any value expression of the form e �e is equivalent to true. This rule can be used in a proof to replace a value expressione � e with true or vice versa. In the handbook [7] there is a collection of proof rulesfor RSL. From the de�nitions and axioms in the context of a justi�cation additionalproof rules can be derived. These rules are called context rules. The context of thecondition above, A HARBOUR1, gives, for example, unfold rules for functions withde�ned bodies. For instance 15

[waiting def]waiting(s, (ws, bs)) ' s 2 wsA justi�cation of the condition is8 h : Harbour, s1, s2 : T.Ship �waiting(s2, arrives(s1, h)) � s1 = s2 _ waiting(s2, h) pre can arrive(s1, h)all name change :8 (ws, bs) : Harbour, s1, s2 : T.Ship �waiting(s2, arrives(s1, (ws, bs))) � s1 = s2 _ waiting(s2, (ws, bs)) pre can arrive(s1, (ws, bs))all assumption inf :waiting(s2, arrives(s1, (ws, bs))) � s1 = s2 _ waiting(s2, (ws, bs)) pre can arrive(s1, (ws, bs))pre deduction inf :[assump] can arrive(s1, (ws, bs)) `waiting(s2, arrives(s1, (ws, bs))) � s1 = s2 _ waiting(s2, (ws, bs))arrives def :waiting(s2, (ws [fs1g, bs)) � s1 = s2 _ waiting(s2, (ws, bs))since can arrive(s1, (ws, bs))assump :trueqedendwaiting def :s2 2 ws [fs1g � s1 = s2 _ waiting(s2, (ws, bs))waiting def :s2 2 ws [fs1g � s1 = s2 _ s2 2 wsisin union :s2 2 ws _ s2 2 fs1g � s1 = s2 _ s2 2 wsisin singleton :s2 2 ws _ s2 = s1 � s1 = s2 _ s2 2 wsor commutativity :s2 = s1 _ s2 2 ws � s1 = s2 _ s2 2 wsis annihilation :trueqedIn the �rst step we rename the binding to match better the context rules likewaiting def. In the second step we assume we have a �xed but arbitrary harbour(ws, bs) and �xed but arbitrary ships s1 and s2. In the third step we removethe precondition from the equivalence and instead assume that it is true. We givethe assumption the name assump so that we can refer to it later in the proof. Inthe fourth step we unfold the application of the function arrives (remembering weare in the context of A HARBOUR1). This gives a new goal with the applicationreplaced with the body of the function de�nition, with actual parameters replacingthe formal ones. As the function has a precondition it also gives a side condition(can arrive(s1, (ws, bs))) which expresses that the precondition is satis�ed. Theproof of the side condition is placed between the keywords since and end. Theside condition is proved using the assumption assump. In the �fth and sixth stepswe unfold the applications of the function waiting. In the next steps we use various16

proofrules for sets, and �nally, in the last step, we apply the rule is annihilation bywhich the proof is completed.3.8 Concrete imperative harbourFrom the concrete applicative module A HARBOUR1 we develop a correspondingconcrete imperative module I HARBOUR1 by the following method:� Declare variables which can contain information of the concrete type of inter-est.� De�ne imperative functions which correspond to the applicative ones. Theyhave the same names. Generators have access write any and observers haveaccess read any. Occurrences of the type of interest are removed from param-eter and result types (and replaced by Unit if there are no other componentsin a parameter or result type).� De�ne the bodies of the functions by adapting the applicative versions to usethe imperative functions corresponding to the applicative ones.� Remove the declaration of the type of interest (if not used elsewhere).This gives the concrete imperative module I HARBOUR1:schemeI HARBOUR1 =classvariablews : T:Ship-set;bs :fj bs : T:Index !m T:Occupancy � (8 idx : T:Index � idx 2 dom bs) jgvalue=� generators �=arrives : T:Ship �! write any Unitarrives(s) � ws := ws [fsg pre can arrive(s);docks : T:Ship � T:Berth �! write any Unitdocks(s; b) �ws := ws n fsg ; bs := bs y [T:indx(b) 7! T:occupied by(s)]pre can dock(s; b);leaves : T:Ship � T:Berth �! write any Unitleaves(s; b) � bs := bs y [T:indx(b) 7! T:vacant] pre can leave(s; b);=� observers �=waiting : T:Ship ! read any Boolwaiting(s) � s 2 ws;occupancy : T:Berth ! read any T:Occupancyoccupancy(b) � bs(T:indx(b));=� invariant �=consistent : Unit! read any Boolconsistent() �(17

8 s : T:Ship �� (waiting(s) ^ is docked(s)) ^(8 b1; b2 : T:Berth �occupancy(b1) = T:occupied by(s) ^occupancy(b2) = T:occupied by(s))b1 = b2) ^(8 b : T:Berth � occupancy(b) = T:occupied by(s)) T:�ts(s; b)));is docked : T:Ship ! read any Boolis docked(s) � (9 b : T:Berth � occupancy(b) = T:occupied by(s));=� guards �=can arrive : T:Ship ! read any Boolcan arrive(s) � � waiting(s) ^ � is docked(s);can dock : T:Ship � T:Berth ! read any Boolcan dock(s; b) �waiting(s) ^ � is docked(s) ^ occupancy(b) = T:vacant ^ T:�ts(s; b);can leave : T:Ship � T:Berth ! read any Boolcan leave(s; b) � occupancy(b) = T:occupied by(s)end3.8.1 Veri�cationSince this development step was from applicative to imperative, we need to decidewhat level of assurance we need for correctness. We can either� check that the method for this transition has been followed correctly, or� formulate the imperative axioms corresponding to the applicative axioms fromA HARBOUR0 and justify them for I HARBOUR1Both of these are veri�cations since they check on the correctness of the developmentprocess. The �rst is informal and is almost certainly all that is necessary for thisfairly straightforward development. The second is formal and can be done if wehave any doubts or require the highest level of assurance of correctness.3.9 Further developmentThere are a few issues left to be resolved:� The de�nition of is docked still involves an existential quanti�er and is prob-ably not translatable yet. So we formulate a development of I HARBOUR1,I HARBOUR2, in which is docked is de�ned byvalueis docked : T.Ship ! read any Boolis docked(s) �local variable found : Bool := false, indx : T.Index := T.min inwhile � found ^ indx � T.max dofound := bs(indx) = T.occupied by(s) ; indx := indx + 1end ; 18

foundendWe can then formulate and justify the re�nement relation between I HAR-BOUR2 and I HARBOUR1 to check this is correct.� We have still left unspeci�ed the types Ship and Berth and the values min,max, �ts and indx; all de�ned in TYPES. In practice we should either havebeen able to de�ne all of these by getting more detailed requirements, orwe could regard them as system parameters to be instantiated for particularharbours.When we are in a position to make de�nite choices for these types and valueswe can de�ne a new module, TYPES1, say. We then justify that TYPES1re�nes TYPES. If it does, we can replace object T : TYPES with object T: TYPES1. This is left as an exercise for the reader.References[1] J.R. Abrial. (1) the speci�cation language Z: Basic library, 30 pgs.; (2) thespeci�cation language Z: Syntax and \semantics", 29 pgs.; (3) an attempt touse Z for de�ning the semantics of an elementary programming language, 3 pgs.;(4) a low level �le handler design, 18 pgs.; (5) speci�cation of some aspectsof a simple batch operating system, 37 pgs. Internal reports, ProgrammingResearch Group, Oxford Univ., Computing Laboratory, April-May 1980.[2] D. Bj�rner and C.B. Jones, editors. Formal Speci�cation and Software Devel-opment. Prentice-Hall International, 1982.[3] R.M. Burstall and J. A. Goguen. The Semantics of Clear, a Speci�cation Lan-guage. In Proceedings of Advanced Course on Abstract Software Speci�cations,volume 86 of Lecture Notes in Computer Science, pages 292{332. Springer-Verlag, 1980.[4] B. Dandanell, J. G�rtz, J. Storbank Pedersen, and E. Zierau. Experiences fromApplications of RAISE: Report 2. In [17], 1993.[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1, Equationsand Initial Semantics. EATCS Monographs on Theoretical Computer Science,vol. 6, Springer-Verlag, 1985.[6] K. Futasugi, J. Goguen, J. Jouannaud, and J. Meseguer. Principles of OBJ2.In 12th Symposium on POPL. Association for Computing Machinery, 1985.[7] C.W. George and S. Prehn. The RAISE Justi�cation Handbook. TechnicalReport LACOS/CRI/DOC/7, CRI: Computer Resources International, 1991.[8] The RAISE Language Group. The RAISE Speci�cation Language. BCS Prac-titioner Series. Prentice Hall, 1992.[9] The RAISE Method Group. The RAISE Development Method. BCS Practi-tioner Series. Prentice Hall, 1995.[10] J. Guttag, J.J. Horning, and J.M. Wing. Larch in �ve easy pieces. TechnicalReport 5, DEC SRC, Dig. Equipm. Corp. Syst. Res. Ctr., Palo Alto, California,USA, 1985. 19

[11] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-tional, 1985.[12] C.B. Jones. Systematic Software Development | Using VDM, 2nd Edition.Prentice-Hall International, 1989.[13] B. Krieg-Br�uckner. Algebraic speci�cation and functionals for transformationalprogram and meta program development. In J. Diaz and F. Orejas, editors,TAPSOFT'89. Vol.2: Adv. Seminar on Foundations of Innovative SoftwareDevelopment II, pages 36{59. Springer-Verlag, Heidelberg, Germany, 1989.[14] D.B. MacQueen. Modules for Standard ML. Polymorphism, II(2), 1985.[15] R. Milner. Calculus of Communication Systems, volume 94 of Lecture Notesin Computer Science. Springer-Verlag, Heidelberg, Germany, 1980.[16] D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci�cationand Implementation. Technical report, Department of Computer Science, Uni-versity of Edinburgh, 1985.[17] J.C.P. Woodcock and P.G. Larsen, editors. FME'93: Industrial-Strength For-mal Methods, First International Symposium of Formal Methods Europe, vol-ume 670 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,Germany, 1993.

20

