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Abstract. The Security-by-Contract (S×C) framework has recently been
proposed to support software evolution in open multi-application smart
cards. The key idea lies in the notion of contract, a specification of the
security behavior of an application that must be compliant with the secu-
rity policy of the card hosting the application. In this paper we address a
key issue to realize the S×C idea, namely the outsourcing of the contract-
policy matching service to a Trusted Third Party (TTP). In particular,
we present the design and implementation of (SC)2 (Secure Communica-
tion over Smart Cards), a system securing the communication between
a smart card and the TTP which provides the S×C matching service.

1 Introduction

The Security-by-Contract (S×C) approach [8, 9] has recently been proposed as
security framework for open multi-application smart cards. As its name suggests,
a multi-application smart card is a smart card that can host several software
applications, in contrast with the most widespread single application smart cards
where each cards host only one application. The challenge is to make these cards
“open” so that third-party applications can be dynamically loaded into and
removed from the card at runtime (i.e., during the card’s active life).

This openness requirement has a direct consequence in the security of such
cards and this explains why concrete deployment of open multi-application cards
has remained extremely rare. Indeed, although several standards for open multi-
application smart cards have emerged (including Java Card [21], MULTOS [5]
and GlobalPlatform (GP) [15]), openness introduces the still open problem of
controlling applications’ evolution, that is to control the interactions among
possible applications after the card has been fielded.

To date, security models for smart cards (namely, permissions and firewall)
do not support any type of applications’ evolution. As a result, smart card de-
velopers have to prove that all changes suitable to be applied to the card are
“security-invariant”. More formally, they have to prove that proof of compliance
with Common Criteria is still valid and a new certificate is not required.
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The Security-by-Contract (S×C) approach has been proposed to address this
applications’ evolution challenge and, indirectly, to support the openness re-
quirement, thus making possible to deploy new applications (owned and asyn-
chronously controlled by different stakeholders) on a card once it is in the field.
S×C builds upon the notion of Model Carrying Code (MCC) [26] and has suc-
cessfully been developed for securing mobile code ([10, 7] to mention only a few
papers). The overall idea is based on the notion of contract, a specification of
the security behavior of an application that must be compliant with the security
policy of the hosting platform (i.e., the smart card). This compliance can be
checked at load time, this way avoiding the need for costly run-time monitoring.

1.1 Contribution of this Paper

The effectiveness of S×C has been discussed in [8, 9], where the authors show
how the approach could be used to prevent an illegal information exchange
among several applications on a single smart card, and how to deal with dynamic
changes in both contracts and platform policy. However, in these papers the
authors assume that the key S×C phase, namely contract-policy matching, is
directly done on the card, which is a resource limited device. What remains
open to bring the S×C idea to its full potential is the possibility of outsourcing
the contract-matching phase to a Trusted Third Party. This need comes from the
hierarchy of contract and policy models of the S×C framework [9], proposed to
address the computational limitations of smart cards. The rationale is that each
level of the hierarchy is used to specify contracts and policies at a certain degree
of expressivity and, consequently, of computational cost. As a result, “light”
contract and policy specifications allow the execution of the matching algorithm
directly on the card, while richer specifications require an external (i.e., off-card)
matching service. Thus, the communication between the card and the trusted
service provider must be secured.

In this paper, we address this issue by means of the design and implemen-
tation of (SC)2, a system specifically developed to secure the communication
between a smart card and a Trusted Third Party responsible for the matching
phase. In particular, the contributions of the paper can be listed as follows:
– extension of the S×C framework to deals with rich contract and policy spec-

ifications (i.e., belonging to a detailed level of the S×C hierarchy of con-
tract/policy models)

– design of the (SC)2 system to secure the communication between a smart
card and the TTP providing the matching service

– a running Java Card based prototype implementing the proposed solution

Outline of this Paper. The remainder of this paper is organized as follows. Sec-
tion 2 gives a concise introduction to the S×C framework and the specific problem
we tackle within that framework. The design of the (SC)2 system is sketched in
Section 3, whereas the details about its implementation as well as its optimiza-
tion are presented in Section 4. A security analysis and a discussion regarding
another implementation of (SC)2 follow in Sections 5 and 6, respectively. Finally,
Section 7 concludes the paper.
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2 S×C for Open Multi-Applications Smart Cards

The S×C framework [10, 7] was originally developed for securing mobile code
[10], building on top of the notion of Model Carrying Code (MCC) [26]. The
key idea behind the S×C approach lies in the notions of contract and policy : a
mobile application carries with a claim on its security behavior (an application’s
contract) that has to be matched against a platform’s policy before download-
ing the application. The main difference between these two concepts is that a
contract is bounded to an application while a policy relates to a platform, such
as a smart card, for instance. Thus, a contract can be seen as a security policy
bounded to a piece of mobile code. This highlights one of the key features of the
S×C foundational idea: by signing the code of an application, a developer binds
it with the claims on its security-relevant behavior, i.e. its contract, providing
a semantic to the digital signature (the digital signature does not certify only
who did the application but also the behavior of the application in terms of
security-relevant actions [10]).

2.1 S×C Framework... in a Nutshell

In its simplest form, the S×C approach follows a workflow similar to the one
depicted in Fig. 1 [9]. The first step concerns the trustworthiness of the mobile
application that one wants to load on the smart card. To do this one needs some
evidence to be checked on the platform. Such evidence can be a trusted signature
as in standard mobile applications [30] or a proof that the code satisfies the
contract (by means of PCC techniques [23] or using specific techniques for smart-
cards [12]). Once there is evidence that the contract is trustworthy, the platform
checks whether the contract is compliant with the policy that the platform wants
to enforce. This is a key phase called contract-policy matching in the S×C jargon.
If they do match, then the application can be run without further ado, because
the application is compliant with both a trusted contract and the platform’s
security policy. On the contrary, if this match results in a failure, then we might
reject the application or enforce the smart card’s security policy. This can be
done, for instance, through inlining techniques or monitoring the application at
run-time. In both cases the application will run with some overhead.

In case an application comes without any evidence of its trustworthiness
(trusted signature and/or proof of contract-code compliance), then the only S×C
solution to run the application is to enforce the smart card’s security policy.

2.2 Problem: Securing Off-Card S×C Contract-Policy Matching

A key issue in the S×C framework concerns where the contract-policy matching
takes place and who is responsible for that key phase of the S×C workflow.
Indeed, due to the computational limitations of a resource limited environment
such as a smart card, running a full matching process on the card might be
too expensive. In the S×C setting, the choice between “on-card” and “off-card”
matching relies on the level of contract/policy abstraction [8, 9]. As a matter of
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Fig. 1. S×C Workflow [taken from [9]]

fact, the framework is based on a hierarchy of contracts/policies models for smart
cards, so that each model in the hierarchy can be used to specify contracts and
policies at a certain level of expressivity. We do not recall such hierarchy here,
because this would be out of the scope of the paper. What instead is important
to stress is that more expressivity (that is, moving from one level to the other
in the hierarchy) results in rich policies and contracts, but also in a complex
matching algorithm requiring more computational efforts.

In this paper we do not consider how contract and policies are specified, that
is, in which policy specification language. Without loss of generality, we assume
that they are specified at a level of abstractions that require the outsourcing of
the contract-policy matching phase, because too expensive to be performed on
the card. This represents a key problem to support the S×C hierarchy of models,
and more in general to bring the S×C approach to its full potential.

Fig. 2 depicts the main idea, where a Trusted Third Party (TTP), for in-
stance the card issuer, provides its computational capabilities to perform the
contract-policy compliance check. This TTP could supply a proof of contract-
policy compliance to be checked on the smart card (SC). The SC’s policy is
then updated according to the results received by TTP: if the compliance check
was successful, then the SC’s policy is updated with the new contract and the
application can be executed. Otherwise, the application is rejected or the policy
enforced.

Since both SC and TTP act in an untrusted environment, the key challenge
to develop the above scenario is to secure the communication between SC and
TTP. In particular, both contract and policy must be encrypted and signed by
SC before they are sent to the TTP to ensure authentication, integrity and con-
fidentiality. Similarly, the results of the matching algorithm must be encrypted
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Fig. 2. Supporting Off-Card S×C Contract-Policy Matching

and signed by the TTP before they are sent back to the SC. In the remain-
der of this paper, our solution to support off-card S×C contract-policy matching
by securing the communication between SC and TTP will be discussed. Before
that, it is important to stress that our solution has been adapted to work on one
of the most widespread technology for multi-application smart cards, namely
Java Card. Java Card is based on the Application Protocol Data Unit (APDU)
command-response paradigm, so well-known protocols such as Kerberos [24] or
Online Certificate Status Protocol (OCSP) [22] cannot be used (or easily ex-
tended) for this purpose. This motivates the need for a new specific protocol.

3 (SC)2: Secure Communication over Smart Cards

A Public Key Infrastructure (PKI) is used to secure the system, where keys and
identities are handled through certificates exchanged between the communicat-
ing parties. For this reason, SC must engage an initialization phase, where its
certificate is created and then stored in the SC along with the initial security
policy and the Certification Authority (CA) certificate. The security of the sys-
tem relies on the assumption that the environment in this phase is completely
trusted and secure. If this is not true, certificates stored at this time are not
trustworthy. All messages exchanged between SC and TTP will be encrypted
and signed in order to accomplish the aforementioned requirements for mutual
authentication, integrity and confidentiality.

In this Section we describe the design of the (SC)2 system, distinguishing be-
tween an initialization phase and a contract-policy matching phase. The system
is based on Java Card: the SC acts as a server which responds only to Application
Protocol Data Unit (APDU) commands by means of APDU-response messages.
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3.1 Initialization Phase

This phase is divided into three different steps: Certificate Signing Request (CSR)
building [25], certificates issuing, and finally certificates and policy storage. Be-
fore this phase, the system has to be deployed on the card. SC’s key pair is
generated on the card during deployment, the private key never leaves the card:
this is one of the security highlights of the system which makes more difficult to
break the PKI.

Trusted Reader (TR) Smart Card (SC)

SC’s public key order

SC’s CSR:

SCCSR SCCSR

CSR’s signature:

SPrKSC(SCCSR)

Store

signed CSR

SPrKSC (SCCSR)

PuKSC

Fig. 3. (SC)2: CSRs Building

As shown in Fig. 3, the first
step consists in building the CSR
for the certificate to be sent to the
CA. In message #1 the Trusted
Reader (TR) queries the SC for
its public key which is sent in
message #2. TR then builds the
CSR and in message #3 sends it
to SC who signs it and send it
back to TR in message #4.
Finally, the TR stores the signed certificate. Message #4: SPrKSC(SCCSR) means
that the CSR from SC (SCCSR) is signed (S) with the private key (PrK) of SC.

In the second step, depicted on Fig. 4(a), TR - Certificates Manager (TRCM)
sends to CA the CSR. CA issues the certificate and sends it back to TRCM.

The last step, shown in Fig. 4(b), completes the initialization phase by storing
in the SC its certificate, the initial security policy and the CA certificate, which
is needed by the SC to verify certificates of TTPs.

Once the SC has been initialized, it is ready to securely engage in any activity
that involves the contract-policy matching. Specifically, the card will be able to
verify the identity of the TTP, to authenticate and to authorize its requests.

SPrKSC (SCCSR)

Certification 

Authority (CA)

Certificate issuance:

SCCertSCCert

TR - Certificates 

Manager

(a) Certificate Issue

Acknowledgment
Store CA’s

certificate

Store

certificate

Store

policy

Acknowledgment

SCCert

Acknowledgment

Policy

Trusted

Reader (TR) Smart Card (SC)

CACert

(b) Storage of Certificates and Policy
on Card

Fig. 4. (SC)2: Certificate Issue and Storage of Certificates and Policy
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3.2 Contract-Policy Matching Phase

During this phase the contract and the security policy stored in the card are sent
from SC to some TTP which runs the matching algorithm and then sends the
result back to SC. The goal is to make the communication between SC and TTP
secure. The proposed solution is shown in Fig. 5. It is divided into three parts:
certificates exchange, contract and policy sending and matching result sending.

Trusted Third Party (TTP) Smart Card (SC)

TTP’s certificate

verificationSCCert

Generation:

K_sess, N_sc

Asymmetric encryption:

EPuKTTP(K_sess),

EPuKTTP(N_sc)

Digital Signature: 

SPrKSC(M | N_sc)
[EPuKTTP(K_sess),

EPuKTTP(N_sc),

EK_sess(M, 

SPrKSC(M | N_sc))]

Contract and Policy order

Digital Signature:

SPrKTTP(R | N_sc+1)

Decrypt, verify and

get the result

Decryption and

verification

Run algorithm

TTPCert

Certificates

exchange

Contract

and policy

sending

Matching

result

sending
Encryption: EK_sess(R,

SPrKTTP(R | N_sc+1))

[EK_sess(R, 

SPrKTTP(R | N_sc+1))]

SC’s certificate

verification

Acknowledgement

Symmetric encryption: 

EK_sess(M,

  SPrKSC(M | N_sc))

Fig. 5. Off-Card Contract-Policy Matching

In the first part, both parties TTP and SC exchange their own certificates
and then respectively check their validity. In particular, SC checks the certificate
received against CA certificate which was stored during the initialization phase.
If some certificate is not valid, the communication terminates. Otherwise TTP
asks SC for the contract and policy. At this point, the SC engages in a sequence
of actions aiming to secure the message M containing the requested information.

Firstly, a session key and a NONCE (Number used Once) that will be used
for this communication are randomly generated. NONCE (Nsc) is used to avoid
replay attacks. The encryption of the message M is done by means of symmetric
cryptography, mainly because it provides higher speed than the asymmetric one
(based on PKI). Security is also improved by the lack of linearity since the session
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key changes for each session. After that, SC encrypts the session key and Nsc

with TTP’s public key ensuring that only TTP will be able to get them. Once
that is done, the message M concatenated with the Nsc is hashed and then signed.
This way, the system provides to the signature with freshness. As Nsc changes,
signature does as well for the same contract and policy. Finally, confidentiality
is ensured through the encryption of message M and signature by means of the
session key. The message to be sent to TTP contains the session key and the
Nsc encrypted by TTP’s public key, and the message and signature encrypted
by the session key, this is, Message #4: EPuKTTP (Ksess), EPuKTTP (Nsc),
EKsess(M, SPrKSC(M |Nsc)). The message is then sent to TTP, which verifies
it and extracts the needed information.

In the last step, the TTP runs the matching algorithm using the information
received in the previous message. When the algorithm finishes, it builds a secure
message containing the result R to be sent to SC. The session key, which has
been previously generated on SC and sent encrypted to TTP, is used again to
encrypt the result R along with the signature, which is done over the result R
concatenated with Nsc +1. The change in the value of Nsc introduces variability
in the hash, making it more unlikely to forge. Thus, the message to be sent is
Message #5: EKsess

(R, SPrKTTP (R|Nsc + 1)).
Finally, SC decrypts and verifies the message getting the result of the match-

ing algorithm. Due to the fact that every APDU communication is made up of a
command and a response, the protocol finishes with the sending of an acknowl-
edgement to the TTP.

4 (SC)2 Implementation

The implementation of the (SC)2 system is depicted in this Section. Due to the
constrained nature of smart cards, we will particularly focus on (SC)2 optimiza-
tion in terms of memory usage and also performance.

4.1 Implementation

Different programming languages have been used according to whether the entity
was an off-card one or not. Java version 1.6 has been used to implement the
TTP and the TR, while SC has been implemented with Java Card 2.2.2. On
one hand, Java was chosen because of its multi-platform feature since TTP
should be run over different devices. On the other hand, Java Card 2.2.2 has
been chosen due to the lack of maturity of Java Card 3 (actually, there are no
cards supporting its implementation). It is worth mentioning that an APDU
extended length capability has been implemented in order to send up to 32
KB data messages instead of the by-default maximum 255 bytes size. Moreover,
the garbage collection is done on-demand. Concerning the execution over a SC
simulator, two different environments have been used: at the earliest stages we
adopted Java Card Platform Workstation Development Environment (Java Card
WDE) tool and then we moved to C-language Java Card Runtime Environment
(CREF) as soon as development needed to save the status of the card.
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Certificates Authentication is ensured by means of X.509 certificates [17]. Cer-
tificates used in (SC)2 are generated by means of OpenSSL 0.9.8n. In order to test
the system, certificates for CA and TTP have to be created. CA root certificate
is generated as a self-signed certificate.

During the initialization phase, the CSR’s signature is done through SHA as
hash algorithm whose digest is encrypted using RSA with a padding according
to the PKCS#1 (v1.5) scheme [19]. Once the CSR is ready, it is sent to the
CA. OpenSSL verifies it and, by means of the CA root certificate, issues a new
certificate corresponding to the CSR received. The certificates are stored on-card
as byte arrays and DER-encoded [16].

Parser An on-card parser has been developed to verify the validity of certifi-
cates received by the SC. Specifically, what is checked is the compliance with
DER and ASN.1 encoding, the signature, the key algorithm and length and
the corresponding issuer. The offsets of a couple of parts of CA’s certificate are
stored on SC in order to ease its access during TTP certificate’s verification [14].
In contrast, SC only needs to temporary store the offset of the TBSCertificate
part [17] from TTP’s certificate. TTP’s certificates are stored temporary be-
cause each certificate is analyzed only once when it is parsed. Certificates are
parsed from the beginning following the DER encoding which guides the parser
through their TLV-structure (Tag-Length-Value). The encoding is checked and
every part is reached, extracting it if needed (i.e., public key). At the end, the
signature is verified against the CA’s public key.

Cryptography Both the aforementioned simulation environments suffer from
a problem that sets limitations on the prototype: not every algorithm from the
API is implemented for these environments [29]. Namely, the main problems
are related to the length in RSA keys and the secure random algorithm. In the
following, they will be detailed more thoroughly.

Concerning asymmetric cryptography, RSA is used with a padding according
to the PKCS#1 (v1.5) schema. The length of RSA keys used in the prototype
is 512 bits because it was the only one provided by the environment as it has
been previously pointed out. However, without this limitation a 2048-bit key size
would be used. The other limitation is related to the random number genera-
tor. In the prototype a Pseudo-Random Generator has been used. Nevertheless,
it is recommended to use a Secure Random Number Generator to avoid the
predictability of the linear congruential algorithms [28].

The chosen symmetric block cipher is AES with 128 bits key length and block
size in Cipher Block Chaining (CBC) mode. This mode makes necessary the use
of an Initialization Vector (IV), known by both sides of the communication in
order to properly finish the encryption/decryption process. Nsc fits perfectly,
since it is random and fresh in every new session. Therefore, IV takes the first
128 bits from Nsc.
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4.2 Optimization

Smart cards are limited in terms of resources, mainly in memory aspects. Some is-
sues must be considered by developers and also by card suppliers, especially that
the card applet will not provoke a memory overflow due to dynamic class instan-
tiations and also that memory limits are not reached. The smart card industry
has provided developers with some specific programming guidelines and method-
ologies in order to keep memory usage under control. Optimization of Java Card
applications normally concerns adapting and formalizing traditional methods of
optimization to Java Card programs as well as developing new techniques, with
the main aim of minimizing execution time and memory consumption.

There are some approaches which have faced the problem of memory over-
flow at Java Card. In [13], for example, a constraint-based algorithm able to
determine potential loops and mutually recursive methods is proposed. This al-
gorithm processes the applet bytecodes by means of a set of processing rules,
designed in such a way that a certified analyzer could be extracted from their
proof of correctness. A similar approach was previously depicted in [3], where
a constraint-based algorithm was built and then formally extracted from the
proof of correctness of the algorithm in the proof assistant Coq [1]. However,
the approach presented in [13] improved the one presented in [3] with respect
to memory usage and also with respect to its scope (the first one also covered
subroutines and exceptions, which were not addressed in the second one).

Both the problem of instantiating classes inside loops and the incorrect usage
of recursive functions in Java-based smart cards are still open challenges. An
interesting approach is [20], where the author describes an on-card bytecode
verifier, but it does not address properties related to memory usage. Previous
work [3] presented a certified analyzer to determine loops and mutually recursive
methods but its memory footprint prevents it from being deployed on-card.

Other works have faced the problem of Java Card optimization from an ana-
lytical point of view. In [6], authors propose to optimize Java Card applications
by adding several new instructions to the Java Card Virtual Machine (JCVM).
These instructions allow to transmit a result inside the bytecodes, thus improv-
ing the resolution of the virtual machine, reducing the quantity of the code
and shortening the runtime overall performance. Other approaches propose to
optimize only the bytecodes generated by a subset of operations of the virtual
machine, such as in [18, 11]. However, the application of these solutions to a com-
mon development cycle is quite complex, since it requires modifying the JCVM.
Finally, a very interesting review to two basic techniques to optimize the Java
Card bytecode set is provided in the IBM WOK 3. These techniques can be used
in the conversion step executed before downloading applets to the card, namely
i) instruction set optimization, and ii) overall data layout optimization.

In this work, some of the main guidelines introduced in [4] have been followed.
Mainly, neither persistent nor transient objects have been created unless strictly
required. Also, nesting method invocations has been avoided, since this practice

3 http://www.zurich.ibm.com/pdf/javacard.pdf
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usually leads to stack overflows. The code has been reviewed to ensure that
objects are instantiated only once, especially when creating new instances inside
loops and functions. Other well known best practices have been followed: i)
merging methods to get a lighter code, avoiding the duplication of code and the
addition of new signatures (which requires extra bytes); ii) a survey of useless
variables has been carried out and then removed. Also, the use of declared final
static variables has been studied in order to find the useless ones; iii) certain
variables have been moved to the method where are used instead of being an
attribute; iv) native functions for the management of arrays have been used to
improve the execution time and also the memory usage of the resulting code,
instead of generating a different, more sophisticated code which does not get
benefit from the native execution; v) finally, complex code constructions have
been avoided, replacing them by more simple ones.

All these code programming optimizations have allowed reducing the applet
memory usage before it is deployed in the card up to a 32% in code size with
respect to the first implementation of the prototype. Also, it is still possible to
apply some of the optimization techniques presented previously, although this
last step is out of the scope of this work.

4.3 Memory Usage Analysis

The memory usage of the resulting implementation has been evaluated. The
importance of this analysis lies in showing that the theoretical idea is suitable
to be implemented and fits in the constrained and limited smart card resources.

Several measures have been taken through the output of the CREF com-
mands. Although the execution of the CREF commands gives us the chance
to retrieve statistics and information related to the EEPROM, the transaction
buffer, the stack usage, the clear-on-reset RAM, the clear-on-deselect RAM and
also the ROM, only the EEPROM data are shown and analyzed. This is due to
the fact that, on the one hand, ROM is the memory which stores binary codes
of the OS and the JCVM, among others. This memory is created and initialized
by the smart card manufacturer and it is not able to be modified later. That is
why it lacks of interest for a developer who cannot alter it. On the other hand,
RAM is the memory which stores the whole application which is running at
every moment and its data. This is very important due to the fact that if an
applet needs for more memory to be executed than RAM provided, this would
end in an error because RAM memory resources are exhausted. However, albeit
this is a problem which every developer has to keep in mind when working on
smart cards, in this work it is not representative since the RAM amount remains
the same and the developer should know its working size. Also, RAM is cleared
at every shutdown and might be cleaned over demand; hence, it changes every
card-tearing. In the case of EEPROM, this memory stores the applications and
data which are dynamically loaded to the card; load which is tried to be properly
managed by the S×C framework. The key point of checking the memory statics
is to know whether it is worth adding the system developed to the card or if it
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Stage
Consumed
before

Consumed
after

Available
before

Available
after

Deployment 6994 11476 58510 54028

Installation 11476 12572 54028 52932

Initialization 12572 15279 52932 50225

Running 15118 14572 50386 50932

Table 1. Memory Usage in Bytes

takes too many memory resources otherwise, thus excessively reducing the space
on-card and making the multi-application framework non suitable.

Table 1 depicts the memory usage in bytes for the prototype implementation.
The CREF simulator provides a 64KB EEPROM memory (this is, 65536 bytes).
The common size for Java Card 2.2.2 real implementations ranges between 32KB
(old and constrained) and 128KB, although it is starting to use greater values.
The stages shown in the left column represent the applet lifecycle, which causes
the main changes over the EEPROM. First of all, the deployment stage consists
of downloading the applet to the card and then storing the bytecode there. The
installation stage is done by means of the static install method, which installs
the applet on the card invoking a registration method. The initialization stage
corresponds to the initialization phase detailed in Secton 3. Finally, the running
stage is the contract-policy matching phase.

Rows in Table 1 depict the memory usage before and after the corresponding
stage was executed. As shown, the card requires almost 7 KB which are normally
reserved for some OS initialization. Downloading the applet to the card takes
almost 5 KB, whilst its installation more than 1 KB. It is worth mentioning that
the initialization stage is the most memory consuming, since all instances are
created and most of the space is reserved in the card at that moment (keys and
algorithms, for instance). However, the optimizations carried out in the code have
allowed to decreases the available memory in less than 3 KB at initialization.
After this stage has been performed, both SC and CA certificates as well as
Policy have been stored. As an example of initial Policy for the card, a file of
518 bytes was used. Obviously, this value will change according to security needs
of the card and installed applications. Finally, the EEPROM consumption of the
matching algorithm only makes memory vary a few hundred bytes. To sum up,
the developed system needs a rough memory space in the EEPROM of 7.5 KB.

Let us now focus on several points related to the obtained values. If the
stats are looked through, downloading the applet is the most consuming stage
because of the extensive source code. That is because the applet has to deal
with several cryptographic problems, even including an on-card parser. Usually,
common applets are not as large, what means that is still possible to store a high
number of them. On the other hand, the heaviest issue is bytecode downloading,
as it was expected. It must be kept in mind than the smart card and also the rest
of current hardware is continuously evolving, so available memory will be greater
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in a short time whilst the necessary space for the system developed will remain.
As shown, the application takes more space than a usual applet because of its
higher complexity, but it does not reduce the available memory considerably,
thus allowing to store a large number of applications in a secure way.

5 Security Analysis

In the S×C framework the goal is to secure a smart card against installation
of malicious software, therefore our focus is to guarantee the security of data
and applications stored on the card. Ultimately this means that origin of the
result of contract-policy matching (i.e. the TTP) must be authenticated. To
make it simpler, if an attacker would manage to forge the last message of off-card
contract-policy matching phase, the security of the system would be invalidated.
In order to prove the system secure we have to analyze it from two different
perspectives: the designed protocols and the cryptographic primitives involved.
The latter is usually assumed secure as long as proper key-sizes and crypto-
algorithms are used. On the other hand the first is the most critical: the simplest
flaw in the protocol design can render a secure algorithm with the longest key
practically useless. This Section is divided into two parts: the first one focuses
on protocol security and the second on cryptographic algorithms and key-sizes.

5.1 Protocol Analysis

In Section 3 we have described the protocols involved in the system, namely
initialization phase (from hereon called protocol #1, see Fig. 3, 4(a) and 4(b))
and Off-card Contract-Policy Matching (protocol #2, see Fig. 2). Protocol #1
is performed in a secure environment, this is because in this phase certificates
and keys are generated, subsequently SC does not have means to establish any
secure communication. Hence protocol #1 is not secure, anyhow this does not
invalidate the security of the system.

The key of the security of the system is then protocol #2. To analyze it we
used the LySa tool [2]. The LySa tool is an automated tool for verifying security
properties of protocols that use cryptography to protect network communication
from tampering by malicious parties. Protocols modeled in the process calculus
LySa are input to the tool. The LySa tool makes a fully automated program anal-
ysis that can guarantee confidentiality and authentication properties. Freshness
and integrity are implicitly guaranteed whenever the Nonce is either confidential
or can not be predicted and whenever the probability of two different messages
colliding into the same hash is negligible.

The protocol has been checked against single session (i.e., one initiator and
one responder at a time). This is sufficient to prove that the system is secure,
since Java Card technology does not allow multiple sessions (one APDU-response
for one APDU-command at a time). The analysis shows that the values known
to the attacker are: contract and policy order message, certificates of parties
involved, and all the encrypted messages (see Fig. 2). These messages does not
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reveal any confidential information as long as cryptography is not broken. The
protocol is therefore secure.

5.2 Cryptographic Algorithms and Key-Sizes

In security, standard cryptographic algorithms are considered secure as long as
the key is large enough to guarantee that the system cannot be broken for the
time data or information needs to be confidential. [27] extensively discuss rec-
ommended algorithms and related weaknesses, if any, along with recommended
key lengths both for symmetric and asymmetric cryptography. In our implemen-
tation we chose AES-128 for symmetric and RSA-512 for the asymmetric (both
values are limitations imposed by the simulator). According to [27], to break a
128 bit symmetric key you need 1016 years while for RSA-512 (whose security
corresponds to 50 bit symmetric key [27]) time to break is significantly smaller,
from 10 min to 1 hour. This is unacceptable since RSA is used for certificates,
which are supposed to be valid for years. Considering that this size was im-
posed by the simulator (Section 4), for a real implementation we recommend
to use RSA-2048 (whose security corresponds to 103 bit symmetric key, time to
break > 108 years). Finally, to generate the NONCE, a Secure Random Number
Generator has to be used instead of a Pseudo-Random one because the latter
produces predictable numbers [28].

6 Discussion

Despite the previous design (and relative prototype), another version has been
developed. In the latter, every entity uses two key pairs, and consequently two
certificates, one for encryption and one for signature. This way, the signature
(performed with the private key for signature of the sender) is encrypted by
means of the public key for encryption of the receiver. Therefore, confidentiality
in the signature is achieved thanks to the public key for encryption instead of
the session key. The diagram of this design is depicted in Fig. 6. Since a new
certificate has to be managed, some changes have been added: it is necessary to
create two CSRs and store two certificates during the initialization, and also to
exchange another one during the matching phase.

This approach is more secure, since it increases the number of keys an attacker
needs to break in order to fully attack the system (i.e., the attacker has to find
not only the session key but also to break RSA for both the certificates).

On the other hand, the space needed by the prototype using two RSA key
pairs is more than 1.5 KB bigger than the one needed by the proposed prototype
(taking in account the prototype built uses 512-bit RSA keys, this amount is ex-
pected to increase with a 2048-bit key). Thus, since smart cards are constrained
resource devices and the security level provided by symmetric encryption is more
than sufficient (Section 5). Hence the approach requiring less space was chosen
as more suitable.
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Fig. 6. Contract-Policy Matching Phase with Two Certificates

7 Conclusion

In this paper we have addressed a key open issue in the S×C framework for
open multi-application smart cards, namely supporting the outsourcing of the
contract-policy matching service to a TTP by securing the communication be-
tween the card and the TTP. The design of the (SC)2 system as well as its
optimized implementation have been presented. The solution provides confi-
dentiality, integrity and mutual authentication altogether. Since smart cards
are resource constrained devices, a memory analysis has also been presented to
demonstrate the suitability of the framework for these devices. Finally, a security
analysis and an alternative version of (SC)2 have been discussed.
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