Secure Programming

An introduction to Splint

Christian D. Jensen René Rydhof Hansen

Informatics and Mathematical Modelling
Technical University of Denmark

E05-02230

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 1/19

The Problem

Program bugs primary attack vector
@ The Internet Worm (November 1988)

o ...

Bad programming
@ Buffer overflow
@ Race conditions (TOCTTOU)
Dereferencing null-pointers

°
@ Use before def.
)

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 2/19

Buffer Overflow

What is a buffer overflow?

@ Read/write beyond memory allocated to buffer

Unchecked user input

Unchecked environment variables
Filenames assumed to be sane

Assuming network packets are well-formed

©

¢ ¢ ¢ ¢

@ May overwrite return addresses (e.g., stack overflow)

@ May insert jumps to library code (e.g., heap overflow)

v
Beware

@ Account for 50+% of reported vulnerabilities [Larochelle 2001]
@ Very hard to find/avoid

A\

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 3/19

Buffer Overflow

void updateEnv(char *str)
{

char *tmp;

tmp = getenv("HOME");
if (tmp != NULL)
strcpy(str,tmp) ;

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 5/19

Buffer Overflow

void updateEnv(char *str)
{

char *tmp;

tmp = getenv("HOME"); /% <-- No length limit =/
if (tmp !'= NULL)
strcpy(str,tmp) ; /* <-- Use strncpy */

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 5/19

Buffer Overflow

void updateEnv(char *str, size t size)

{

char *tmp;

tmp = getenv("HOME"); /% <-- No length limit =/

if (tmp !'= NULL)

{
strncpy(str,tmp,size-1);
strlsize -1] = ’\0’;

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 5/19

Time-Of-Check-To-Time-Of-Use (TOCTTOU) Flaws

How does it work?

@ Checking file permissions, do something, open the file and write to
it... file may have changed permission in-between

Example

access("/tmp/X")

open("/tmp/X")

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 7/19

Time-Of-Check-To-Time-Of-Use (TOCTTOU) Flaws

How does it work?

@ Checking file permissions, do something, open the file and write to
it... file may have changed permission in-between

Example
creat ("/tmp/X")
access("/tmp/X")
unlink("/tmp/%x")
symlink("/tmp/X","/etc/passwd")
open ("/tmp/X")

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 7/19

De-referencing null-pointers

@ Following a null-pointer

@ Trying to use a “freed” pointer
@ Not checking a freshly malloc'ed pointer
o ...

void foo(void)
{

char *tmp;

tmp = (char *) malloc(MAXTMP);
*tmp = ’X’;
}

o

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 9/19

De-referencing null-pointers

@ Following a null-pointer

@ Trying to use a “freed” pointer
@ Not checking a freshly malloc'ed pointer

& v
void foo(void)
{

char *tmp;

tmp = (char *) malloc(MAXTMP);
if (tmp != NULL)
*tmp = ’X’;

V.
CDJ/RRH (IMM/DTU) Secure Programming E05-02230 9/19

Solving the Problem of Bad Programming

Solutions?

Teach (force?) programmers to be more careful

©

Use safe(r) languages
More and better testing

Formal methods

e & ¢ ¢

Language-Based Techniques

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 10 / 19

Solving the Problem of Bad Programming

Solutions?

Teach (force?) programmers to be more careful Long-term!

©

Use safe(r) languages Sometimes you need C
More and better testing Cannot cover full program

Formal methods Time consuming, expensive

e & ¢ ¢

Language-Based Techniques

Language-Based Technology

Using programming language techniques to verify safety and security of
programs

Java and C# (bytecode verification, type systems, sandboxing, ...)

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 10 / 19

Language-Based Technology

Software Model Checking

©

@ Certifying Compilers

@ Proof Carrying Code (PCC)
@ Inlined Reference Monitors
@ Type-Systems

@ Static Analysis

Static Analysis

@ Roots: optimising compilers
@ Static computation of dynamic behaviour
@ Approximation used to sidestep halting-problem

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 11/ 19

Splint: Light-Weight Annotation-Based Static Analysis

Secure Programming LINT

@ Based on lint: well-known program checker

@ Let the programmer annotate program
@ Check that the program is consistent with annotations

@ Can find many common errors

Other Tools
@ SLAM (used at Microsoft)
BLAST

| \

()

@ Bandera
o CQUAL
@ MOPS
°

o

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 12 /19

Splint: De-referencing null-pointers

void foo(void)

{

char *tmp;

tmp = (char *) malloc(MAXTMP);
*tmp = ’X’;
free(tmp) ;

$ splint exOl.c

ex01.c:8:4: Dereference of possibly null pointer tmp: *tmp
A possibly null pointer is dereferenced...

v

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 14 /19

Splint: De-referencing null-pointers

void foo(void)

{

char *tmp;
tmp = (char *) malloc(MAXTMP);
if (tmp != NULL)
*tmp = *X’;
free(tmp) ;

$ splint exOl.c

Finished checking --- no warnings

v

CDJ/RRH (IMM/DTU) Secure Programming

E05-02230 14 /19

Splint: Buffer Overflow

void updateEnv(char *str)

{

char *tmp;

tmp = getenv("HOME");

if (tmp !'= NULL) {
strcpy(str,tmp) ;

$ splint +bounds buffer0Ol.c

buffer01:9: Possible out-of-bounds store: strcpy(str,tmp)..

v

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 16 / 19

Splint: Buffer Overflow

void wupdateEnv(char *str, size_ t size)
/*Q@requires maxSet(str) >= size -10%/
{

char *tmp;

tmp = getenv("HOME");

if (tmp '= NULL) {
strncpy(str,tmp,size-1);
strlsize -1] = ’\0’;

$ splint +bounds buffer0Ol.c

Finished checking --- no warnings

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 16 / 19

Splint: Buffer Overflow

Annotations
@ maxSet(b): max. index of b that is assigned

@ maxRead (b): max. index of b that is read

void updateEnv(char *str, size_t size)
/*Q@requires maxSet(str) >= size -10x%/

@ In order for updateEnv to “work”:
@ Parameter str must be “settable” upto (and including) position
size - 1
o Note: strlsize -1] = ’\0’
v

Secure Programming E05-02230 18 /19

CDJ/RRH (IMM/DTU)

Splint: Summary

Only scratched the surface!

@ Cant catch many common programming errors

@ Memory modelling
Sharing

Control Flow
User defined

¢ ¢ ©

v

The Downside?

@ May need a lot of annotation

Not complete

°
@ Not sound
)

CDJ/RRH (IMM/DTU) Secure Programming E05-02230 19 /19

