
Robin Sharp
Informatics and Mathematical Modelling

Technical University of Denmark
Phone: (+45) 4525 3749

e-mail: robin@imm.dtu.dk

02230: Program Security

Autumn 2005 Computer Security ©Robin Sharp 2

Basic Ideas

A program security flaw is an undesired program
behaviour caused by a program vulnerability.
Work on program security considers two questions:

How do we keep programs free from flaws?
How do we protect computing resources against programs
with flaws?

Early idea was to attack the finished program to
reveal faults, and then to patch the corresp. errors.
Experience shows that this is not effective, and just
tends to introduce new faults (and errors)!
More modern approach is to use careful specification
and compare behaviour with the expected.

Autumn 2005 Computer Security ©Robin Sharp 3

IEEE Quality Terminology

IEEE Standard 729 defines quality-related terms:
Error: A human mistake in performing some
software-related activity, such as specification or
coding.
Fault: An incorrect step, command, process or data
definition in a piece of software.
Failure: A departure from the system’s desired
behaviour.

Note that:
An error may cause many faults.
Not every fault leads to a failure.

Autumn 2005 Computer Security ©Robin Sharp 4

Program security flaws

Fall into two groups:
1. Non-malicious flaws. Introduced by the

programmer overlooking something:
Buffer overflow
Incomplete mediation
Time-of-check to Time-of-use (TOCTTU) errors

2. Malicious flaws. Introduced deliberately (possibly
by exploiting a non-malicious vulnerability):

Virus, worm, rabbit
Trojan horse, trapdoor
Logic bomb, time bomb

Autumn 2005 Computer Security ©Robin Sharp 5

Buffer overflow

A program that fails to check for buffer overflow may
allow vital data or code to be overwritten:

A A A A A A A A A B
User buffer Overflow

● Buffer may overflow into (and change):
User’s own data structures
User’s program code
System data structures
System program code

Autumn 2005 Computer Security ©Robin Sharp 6

Buffer overflow (2)

Space for declared variables is in many languages
allocated on the stack, together with return
addresses.
This means that overflow of a buffer can overwrite
the return address:

Local
buffer

Old base pointer

Return address

Arguments

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

0xBFFFF740

Arguments

Stack

Autumn 2005 Computer Security ©Robin Sharp 7

Buffer overflow vulnerabilities

String operations in C:

strcpy unsafe, no checks that dst can contain src.
strncpy safe, but confusing (different from strncat etc.)

Format string vulnerabilities in C:

“%s” is format string, giving number and types of other args.
No checks that correct no. of args are in fact supplied.
So what happens if buf1 contains the string “%s”?

strcpy (dst, src);
strncpy(dst, src, sizeof dst);

printf(“%s”, buf0);
printf(buf1);

Autumn 2005 Computer Security ©Robin Sharp 8

Analysis tools

Static analysis of program text:
ITS4 (Reliable Software Technologies/Cigital)
http://www.cigital.com/its4
Flawfinder (Wheeler, 2001)
http://www.dwheeler.com/flawfinder
LCLint/Splint (Evans et al. 2002)
http://www.splint.org
Type qualifiers (Shankar et al., 2001)
Cyclone (Morissett et al., 2003)

Dynamic analysis of execution:
Stackguard
Purify
CCured
Safe-C

http://www.cigital.com/its4
http://www.dwheeler.com/flawfinder
http://www.splint.org/

Autumn 2005 Computer Security ©Robin Sharp 9

Incomplete mediation

Failure to perform “sanity checks” on data can lead
to random or carefully planned flaws.
Examples:

Impossible dates in correct format (say yyyyMMMdd):
1800Feb30, 2048Min32

What happens when these dates are looked up in tables in
the program?
Alterable parameter fields in URL:
http://www.things.com/order/final&custID=101
&part=555A&qy=20&price=10&ship=boat&total=205

Web site adds parameters incrementally as transaction
proceeds. User can change them inconsistently.

http://www.things.com/order/final&custID=101

Autumn 2005 Computer Security ©Robin Sharp 10

Time-of-check to Time-of-use (TOCTTU)

A delay between checking permission to perform
certain operations and using this permission may
enable the operations to be changed.
Example:
1. User attempts to write 100 bytes at end of file “abc”.

Description of operation is stored in a data structure.
2. OS checks user’s permissions on copy of data structure.
3. While user’s permissions are being checked, user changes

data structure to describe operation to delete file “xyz”.

Can you find further examples?

Autumn 2005 Computer Security ©Robin Sharp 11

Malicious code

Virus: Attaches itself to program or data, passing malicious
code on to non-malicious programs by modifying them.
Trojan horse: Has non-obvious malicious effect in addition to
its obvious primary effect.
Logic/time bomb: Has malicious effect when triggered by
certain condition.
Trapdoor/backdoor: Gives intruder (possibly privileged)
access to computer.
Worm: Stand-alone program which spreads copies of itself via
a network.
Rabbit: Reproduces itself continually to exhaust resources.

Autumn 2005 Computer Security ©Robin Sharp 12

Virus attachment

Virus can attach itself to program or data by:
Appending itself, so virus code is activated when program is
run. (Variation: Virus code before and after program.)
Integrating itself into program, so virus code is spread out
over its target program.
Integrating itself into data, e.g. as an executable text macro.

When activated, virus may:
Cause direct and immediate harm.
Run as memory-resident program, always available for use
in discovering and infecting new targets.
Replace (or relocate) boot sector program(s), so malicious
code runs when system starts up.

Autumn 2005 Computer Security ©Robin Sharp 13

Virus detection

Anti-virus systems can be based on:
Static analysis of code or data:

Look for virus signatures: characteristic patterns of instructions or
data in files and/or memory.

Dynamic analysis of behaviour:
Look for characteristic behaviour patterns (OS calls, etc.), for
example by using Markov models, neural networks…

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3
%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858
%ucdb3%u7801%u9090
%u9090%u8190%u00c3%u0003%uub00%u531b%u53ff
%u0078%u0000%u000a
HTTP/1.0

Code Red

Autumn 2005 Computer Security ©Robin Sharp 14

Immune systems

In the human immune
system, macrophages detect
foreign proteins such as vira
and “consume” them.

This causes characteristic
antigens to appear on the
macrophage. These attract
other white blood cells to
attack and destroy the vira.

Anti-virus systems in
computers sometimes model
these effects to attack “non-
self”. (E.g. IBM anti-virus)

Autumn 2005 Computer Security ©Robin Sharp 15

Covert channels

A type of vulnerability which can be exploited to
access unauthorised information.
Analogous to steganography: transmission of
information by hiding it in other information.
Many techniques:

Formatting of data in output.
Storage channels: Information is passed via the state of
objects in storage.
a) Locking of a file (e.g. locked=1, unlocked=0)
b) Existence of a file (e.g. yes=1, no=0)
Timing channels: Information is passed via the timing of
events (e.g. short interval=0, long interval=1).

The spy just needs to be able to “see” the channel.

Autumn 2005 Computer Security ©Robin Sharp 16

Identifying covert channels (1)

Service
process

Spy’s
process

Lock Read,
Modify

Read,
Modify

Confidential Read

Covert channels depend on
shared resources, so construct a
matrix of resources vs. subjects:
Look for rows/columns with the
pattern :

B cannot read from Resource 2,
but A can pass info to B by
reading Resource 2 and signal-
ling by modifying Resource 1.
So there is potentially info flow
into the red box.

A B

M R

R
ReadResource 1

Resource 2

Autumn 2005 Computer Security ©Robin Sharp 17

Identifying covert channels (2)

Statement Flow
B:=A A→B
if C then B:=A A→B;C→B
For k:=1 to N do
stmts end

k→stmts

while k>0 do stmts
end

k→stmts

case(exp)
val1:stmts

exp→stmts

B:=fcn(args) fcn→B
open file f —
readf(f,X) f→X
writef(f,X) X→f

Denning’s Information Flow
method:
Uses static analysis of
program text based on
syntax. For example: B:=A
implies info flow A→B.
Automatic analysis can
reveal undesired info flows.
Can be integrated into
compiler or specification
tool.

Autumn 2005 Computer Security ©Robin Sharp 18

Aims of program security

Principal aim: Produce trusted software i.e. where
code has been rigorously developed and analysed.
Key characteristics:

Functional correctness: Program does what it is supposed
to do.
Enforcement of integrity: Robust, even if exposed to
incorrect commands or data.
Limited privilege: Access to secure data is kept to the
minimum level necessary, and rights are not passed on to
untrusted programs or users.
Appropriate confidence level: Program has been
examined and rated to a degree of trust suitable for the data
and environment in which it will be used.

Obviously a product of good software engineering.

	Basic Ideas
	IEEE Quality Terminology
	Program security flaws
	Buffer overflow
	Buffer overflow (2)
	Buffer overflow vulnerabilities
	Analysis tools
	Incomplete mediation
	Time-of-check to Time-of-use (TOCTTU)
	Malicious code
	Virus attachment
	Virus detection
	Immune systems
	Covert channels
	Identifying covert channels (1)
	Identifying covert channels (2)
	Aims of program security

