Advanced Access Control

In many cases, identity is a bad criteria for
authorization.

We examine two modern paradigms for access
control, which overcome this limitation:

1. Role-Based Access Control
2. Trust Management Systems

Role-Based Access Control

« In many cases, authorization should be based on the function
(role) of the subject in the manipulation of the object
e Examples
— Function in a bank branch
o teller clerks
o financial advisors
* Bank manager
— Function in a hospital
* Doctors (GP, consultant, treating doctor, ...)
« Nurses (ward nurse, nurse, ...)
« Hospital administrators
— Functions at a university
« Academics (teachers, research fellows, ...)
+ Non-academic staff (secretaries, system administrators, ...)
 Students
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Common Concepts

Definitions:
e Active role:

AR(s . subject) = (the active role for subject s)
e Authorized roles:

RA(s : subject) = {authorized roles for subject s}
¢ Authorized transactions:

TA(r : role) = {authorized transactions for role }
¢ Predicate exec:

exec(s : subject, t : transaction) = true iff scan execute ¢
e Session:

Binds a user to a set of currently activated roles
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General RBAC Rules

Rules:
1. Role assignment:
Vs : subject, t : transaction (exec(s,t) = AR(S) = @)
A subject can only execute a transaction if it has selected a role
2. Role authorization:
Vs : subject (AR(s) = RA(S))
A subject’s active role must be authorized for the subject
3. Transaction authorization:

Vs : subject, t : transaction (exec(s,t) = t € TA(AR(S)))
A subject can only execute a transaction if it is authorized for its active role
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RBAC96

* Role-Based Access Control was defined by Ferraiolo &
Kuhn from NIST in 1992

o A family of related RBAC models were defined by
Sandhu et al. in 1996 — this family is commonly
known as RBAC96

— RBAC96 forms the basis for most of the continued work on
Role-based Access Control
RBAC;  combines RBAC, and RBAC,

e RBAC96 defines the /\
following models:
Extends RBAC, RBAC RBAC, Extends RBAC,

with role hierarchies with constraints

RBAC,  Basic RBAC model
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Users, Roles & Permissions

RBAC, Formal Definition

e In RBAC, a user is a human being, though it can be
generalized to include other active agents
e Each individual should be known as exactly one user
¢ Permissions are always positive
— No negative permission.

— Denial of access is modelled as a constraint (RBAC, and
RBAC;)

* A permission can be defined for a single object or a
set of objects
— Depends on applications

e U R Pand$S
— Users, roles, permissions, sessions
o PA c Px R: permission-role assignment
o UA c U x R: user-role assignment
o user:S— U,
o roles: S— 2R,
— roles(s) c{r| (usen(s),r) e UA},
o Permissions: S — 2P
= Permissions(s) € U, _yesstPl (D7) € PA}
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Role Hierarchy

Transitive Inheritance of Permissions

RBAC,
Role Hierarchy
(RH)
User-Role Permission-Role
Assignment Assignment

(UA) (PA)
MM

roles
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General Hospital
Practitioner Consultant

Doctor

Health Care Provider
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Role Hierarchy
Multiple Inheritance of Permissions

Semantics of Role Hierarchies

Supervising
Engineer
Software Hardware
Engineer Engineer
Engineer

e User inheritance

— r1=r2 means every user that is a member of r1 is also a
member of r2

e Permission inheritance

— r1=r2 means every permission that is authorized for r2 is
also authorized r1

o Activation inheritance
— r1=r2 means that activating r1 will also activate r2
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RBAC, Formal Definition

U R P S5 PA, UAand userare same as RBAC,

o RHc Rx R, a partial order with dominance
relation 2,

e roles: S— R,
— roles(s) = {r| 3 r2r) [(usen(s),r) e UAI},
e Permissions: S — 2°
= Permissions(s) c U, . wess P | 3 r'<rl(p,r") e PAT}
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RBAC Constraints

Mutually Exclusive Users (Separation of Duty - SoD)
— Static Exclusion (static SoD): The same individual user can never
hold mutually exclusive roles (by UA)
— Dynamic Exclusion (dynamic SoD): The same individual user can
never hold mutually exclusive roles in single session
Mutually Exclusive Roles
— Static Exclusion (static SoD): Two mutually exclusive roles cannot
be assigned with the same permissions
— Dynamic Exclusion (dynamic SoD): Two mutually exclusive roles
can be assigned with the same permissions but cannot be activated
at the same time by different users
* Mutually Exclusive Permissions
— Static Exclusion (static SoD): The same role should never be
assigned to mutually exclusive permissions

— Dynamic Exclusion (dynamic SoD): The same role can never hold
mutually exclusive permissions in single session
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Dynamic Constraints

e Constraints may also consider other elements:

— Physical environment
« Location (certain roles can only be activated in certain places)
« Time (time-lock on till or safe)

— Execution history
» Enforces well-formed transactions

— Context
¢ Business meetings
* Emergencies
* Games
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RBAC Summary

¢ Roles add a useful level of indirection, which allows
aggregation of users and permissions
— Fewer relationships to manage

o from O(mn) to O(m+n), where m is the number of users and n
is the number of permissions

¢ Role hierarchies allow users to assume more
specialized roles (with more permissions) as needed
— This helps enforce the principle of least privilege

¢ Constraints allow enforcement of separation of duty

and dynamic adaptation of policies to the current
context, e.g., Chinese Wall policy
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Pause

Back in 15 minutes
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Trust Management

e Term coined by Matt Blaze in 1996
¢ Provides (partial) answer to questions like:
— “Should I perform this (dangerous) action?”
— “Why should this principal be granted this privilege?”
o Systematic approach to managing:
— Security policies, credentials and trust relationships
— Based on compliance checking, not human notion of trust
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Compliance Checking

* Provides advice to applications on whether
“dangerous” actions should be permitted

e Compliance checker uses local policy and signed
credentials in these decisions
— Only actions that conform to policy are allowed

¢ Aslong as all dangerous actions are checked with the
compliance checker, we know that the security policy
is being followed
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Distributed Policies

¢ Ideally policies are stored in one place and specified
by one person

¢ In reality, different parts of the policy often come
from different places (and authorities)
— Delegation of authorization
— Different administrators for different services
— Multiple requirements for access

o There may not even be a single complete statement
of the policy

e Large scale systems imply high complexity in
managing specification, location and consistency of
policy components
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Policies and Credentials

* A policy specifies who is allowed to do what
— who may be a public-key
— what may be a potentially dangerous action

¢ A credential delegates authorization to someone else
— someone else may also be a public-key

¢ Distributed systems blur the distinction between
policies and credentials

— A credential is a policy signed by someone who are
authorized to do so

Trust Management Elements
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¢ A language for Actions

— Operations with security implications for applications
¢ A naming scheme for Principals

— Entities that can be authorized to request actions
¢ A language for Policies

— Govern the actions that principals are authorized for
* Alanguage for Credentials

— Allow principals to delegate authorization
o A Compliance Checker and interface

— Service that determines whether a requested action should
be allowed, based on policy and a set of credentials
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Trust Management Architecture
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Typical Trust Management Languages

¢ PolicyMaker
— Blaze, Feigenbaum and Lazy (1996)

— Compliance checking formalized in Blaze, Feigebaum and
Strauss (1998)

— Very general, designed more for study than for use
¢ KeyNote
— Blaze, Feigenbaum, Ioannidis, Keromytis (1997)
— Defined in RFC 2704
— Designed to be used, especially in Internet apps.
¢ Both share the same basic semantic structure
— Based on assertions
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e Authorize principals to perform actions
¢ Policies are defined by a collection of assertions
¢ Assertions contain two basic parts:
— A principal identifier (key or key expression)
« allows the principal to be authenticated
— Action predicate

— Principal is authorized to perform actions that pass the
action predicated

¢ Assertions can be signed by keys
— Signed assertions are credentials
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Assertion Syntax

e principal is-authorized-for predicate

{signed-by authorizer}

— The keys in principal are authorized for actions that pass the

predicate according to authorizer

* Exmple of Keynote assertion syntax:

Authorizer: <keyword POLICY or signer’s public-key>

Licensees: <principal, tests signer keys>

Conditions: <trust-expression, tests action attributes>

Signature: <encoding of signature, for signed credentials>
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Compliance Checking Semnatics

¢ An action is allowed if any policy assertion allows it

¢ An assertion is considered to allow an action if its
predicate passes and either
— The action was directly requested by the assertions licensees

— The action was approved by some other assertion signed by
the licensees
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Compliance Checking Process

¢ Application collects appropriate assertions
— Local, trusted root policy assertions
— Credentials signed by someone else
» Application forms action description
— Collection of free form attributes
— Associated with principal identifier (ID or key)
» Compliance Checker finds compliance value

— Evaluates action against conditions in assertions forming a
graph between root policy and requestor

— Binary: allowed/denied, or multi-valued
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Assertion Monotonicity

e Assertions are monotone

— Adding an assertion can never cause an acction to become
disallowed

— Deleting an assertion will never cause a disallowed action to
become allowed
— Nothing is allowed unless explicitly allowed by an assertion
¢ Implications of monotonicity
— Safe for distributed systems
* Missing assertions cannot cause policy violations
— Set of allowing assertions constitute “proof of compliance”

« Clients can collect appropriate signed assertions and present
them to server

— No conflicts
« If an action can be allowed it will be allowed
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Summary of Trust Management

* Appropriate for large-scale distributed systems
— Decentralized policy specification and storage
— Decentralized (autonomous) policy enforcement
¢ Provides both decision and reason for decision
— List of credentials used to authorize request
» Facilitates dynamic evolution of policy
— Incremental addition of assertions allows policies to evolve,
e.g., adding new principals/roles/permissions/resources
— Well suited for dynamic open systems (pervasive computing)
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