Advanced Access Control

In many cases, identity is a bad criteria for
authorization.

We examine two modern paradigms for access
control, which overcome this limitation:

1. Role-Based Access Control
2. Trust Management Systems

Role-Based Access Control

« In many cases, authorization should be based on the function
(role) of the subject in the manipulation of the object
e Examples
— Function in a bank branch
o teller clerks
o financial advisors
* Bank manager
— Function in a hospital
* Doctors (GP, consultant, treating doctor, ...)
« Nurses (ward nurse, nurse, ...)
« Hospital administrators
— Functions at a university
« Academics (teachers, research fellows, ...)
+ Non-academic staff (secretaries, system administrators, ...)
 Students

02230 Data Security

Common Concepts

Definitions:
e Active role:

AR(s . subject) = (the active role for subject s)
e Authorized roles:

RA(s : subject) = {authorized roles for subject s}
¢ Authorized transactions:

TA(r : role) = {authorized transactions for role }
¢ Predicate exec:

exec(s : subject, t : transaction) = true iff scan execute ¢
e Session:

Binds a user to a set of currently activated roles

02230 Data Security 3

General RBAC Rules

Rules:
1. Role assignment:
Vs : subject, t : transaction (exec(s,t) = AR(S) = @)
A subject can only execute a transaction if it has selected a role
2. Role authorization:
Vs : subject (AR(s) = RA(S))
A subject’s active role must be authorized for the subject
3. Transaction authorization:

Vs : subject, t : transaction (exec(s,t) = t € TA(AR(S)))
A subject can only execute a transaction if it is authorized for its active role

02230 Data Security

RBAC96

* Role-Based Access Control was defined by Ferraiolo &
Kuhn from NIST in 1992

o A family of related RBAC models were defined by
Sandhu et al. in 1996 — this family is commonly
known as RBAC96

— RBAC96 forms the basis for most of the continued work on
Role-based Access Control
RBAC; combines RBAC, and RBAC,

e RBAC96 defines the /\
following models:
Extends RBAC, RBAC RBAC, Extends RBAC,

with role hierarchies with constraints

RBAC, Basic RBAC model

02230 Data Security 5

RBAC,

User-Role Permission-Role
Assignment Assignment
- — -
=D
users roles
Sessions

02230 Data Security

Users, Roles & Permissions

RBAC, Formal Definition

e In RBAC, a user is a human being, though it can be
generalized to include other active agents
e Each individual should be known as exactly one user
¢ Permissions are always positive
— No negative permission.

— Denial of access is modelled as a constraint (RBAC, and
RBAC;)

* A permission can be defined for a single object or a
set of objects
— Depends on applications

e U R Pand$S
— Users, roles, permissions, sessions
o PA c Px R: permission-role assignment
o UA c U x R: user-role assignment
o user:S— U,
o roles: S— 2R,
— roles(s) c{r| (usen(s),r) e UA},
o Permissions: S — 2P
= Permissions(s) € U, _yesstPl (D7) € PA}

02230 Data Security

02230 Data Security 8

Role Hierarchy

Transitive Inheritance of Permissions

RBAC,
Role Hierarchy
(RH)
User-Role Permission-Role
Assignment Assignment

(UA) (PA)
MM

roles

Sessfons

General Hospital
Practitioner Consultant

Doctor

Health Care Provider

02230 Data Security

02230 Data Security 10

Role Hierarchy
Multiple Inheritance of Permissions

Semantics of Role Hierarchies

Supervising
Engineer
Software Hardware
Engineer Engineer
Engineer

e User inheritance

— r1=r2 means every user that is a member of r1 is also a
member of r2

e Permission inheritance

— r1=r2 means every permission that is authorized for r2 is
also authorized r1

o Activation inheritance
— r1=r2 means that activating r1 will also activate r2

02230 Data Security

02230 Data Security 12

RBAC, Formal Definition

U R P S5 PA, UAand userare same as RBAC,

o RHc Rx R, a partial order with dominance
relation 2,

e roles: S— R,
— roles(s) = {r| 3 r2r) [(usen(s),r) e UAI},
e Permissions: S — 2°
= Permissions(s) c U, . wess P | 3 r'<rl(p,r") e PAT}

02230 Data Security

RBAC,

User-Role Permission-Role
Assignment Assignment
(UA) (PA)
AN A~
e &>
~ \
DN 5 \

N
users roles < \
N \

Sessions

N ~ <)
\
<. A
Te- Constraints

02230 Data Security

RBAC Constraints

Mutually Exclusive Users (Separation of Duty - SoD)
— Static Exclusion (static SoD): The same individual user can never
hold mutually exclusive roles (by UA)
— Dynamic Exclusion (dynamic SoD): The same individual user can
never hold mutually exclusive roles in single session
Mutually Exclusive Roles
— Static Exclusion (static SoD): Two mutually exclusive roles cannot
be assigned with the same permissions
— Dynamic Exclusion (dynamic SoD): Two mutually exclusive roles
can be assigned with the same permissions but cannot be activated
at the same time by different users
* Mutually Exclusive Permissions
— Static Exclusion (static SoD): The same role should never be
assigned to mutually exclusive permissions

— Dynamic Exclusion (dynamic SoD): The same role can never hold
mutually exclusive permissions in single session

02230 Data Security

Dynamic Constraints

e Constraints may also consider other elements:

— Physical environment
« Location (certain roles can only be activated in certain places)
« Time (time-lock on till or safe)

— Execution history
» Enforces well-formed transactions

— Context
¢ Business meetings
* Emergencies
* Games

02230 Data Security

RBAC,

Role Hierarchy
(RH)

User-Role Permission-Role
Assignment Assignment

(Ué) (PA)
CEECD

~
users roles «
N

N
N
Sessions AN \

- S

02230 Data Security

RBAC Summary

¢ Roles add a useful level of indirection, which allows
aggregation of users and permissions
— Fewer relationships to manage

o from O(mn) to O(m+n), where m is the number of users and n
is the number of permissions

¢ Role hierarchies allow users to assume more
specialized roles (with more permissions) as needed
— This helps enforce the principle of least privilege

¢ Constraints allow enforcement of separation of duty

and dynamic adaptation of policies to the current
context, e.g., Chinese Wall policy

02230 Data Security

Pause

Back in 15 minutes

02230 Data Security 19

Trust Management

e Term coined by Matt Blaze in 1996
¢ Provides (partial) answer to questions like:
— “Should I perform this (dangerous) action?”
— “Why should this principal be granted this privilege?”
o Systematic approach to managing:
— Security policies, credentials and trust relationships
— Based on compliance checking, not human notion of trust

02230 Data Security 20

Compliance Checking

* Provides advice to applications on whether
“dangerous” actions should be permitted

e Compliance checker uses local policy and signed
credentials in these decisions
— Only actions that conform to policy are allowed

¢ Aslong as all dangerous actions are checked with the
compliance checker, we know that the security policy
is being followed

02230 Data Security 21

Distributed Policies

¢ Ideally policies are stored in one place and specified
by one person

¢ In reality, different parts of the policy often come
from different places (and authorities)
— Delegation of authorization
— Different administrators for different services
— Multiple requirements for access

o There may not even be a single complete statement
of the policy

e Large scale systems imply high complexity in
managing specification, location and consistency of
policy components

02230 Data Security 22

Policies and Credentials

* A policy specifies who is allowed to do what
— who may be a public-key
— what may be a potentially dangerous action

¢ A credential delegates authorization to someone else
— someone else may also be a public-key

¢ Distributed systems blur the distinction between
policies and credentials

— A credential is a policy signed by someone who are
authorized to do so

Trust Management Elements

02230 Data Security 23

¢ A language for Actions

— Operations with security implications for applications
¢ A naming scheme for Principals

— Entities that can be authorized to request actions
¢ A language for Policies

— Govern the actions that principals are authorized for
* Alanguage for Credentials

— Allow principals to delegate authorization
o A Compliance Checker and interface

— Service that determines whether a requested action should
be allowed, based on policy and a set of credentials

02230 Data Security 2

Trust Management Architecture

credentials action requests
e e A |
1
I signed Key & :
! X creds. action H
1 credential | ———— | Compliance 1
: system Checker — !
i 1
1 local (PolicyMaker, application 1
i policies KeyNote or response H
| ocal | PO || REFEREE N !
: policy DB Interpreter) 1
' i
! I
! 1
L PRI |1~ SPN 1
boundary
02230 Data Security 25

Typical Trust Management Languages

¢ PolicyMaker
— Blaze, Feigenbaum and Lazy (1996)

— Compliance checking formalized in Blaze, Feigebaum and
Strauss (1998)

— Very general, designed more for study than for use
¢ KeyNote
— Blaze, Feigenbaum, Ioannidis, Keromytis (1997)
— Defined in RFC 2704
— Designed to be used, especially in Internet apps.
¢ Both share the same basic semantic structure
— Based on assertions

02230 Data Security 27

Remote (L
Local (Trusted) Environment
Application
KeyNote
APl
appIeaTon|
policy
Local
Application KeyNote KeyNote
KeyNote | querles Interpreter|
API trust
appieaTon| mgmt
policy System
Application
eyNoTe
API
potey Credential
managément
(PKI)
02230 Data Security 26

e Authorize principals to perform actions
¢ Policies are defined by a collection of assertions
¢ Assertions contain two basic parts:
— A principal identifier (key or key expression)
« allows the principal to be authenticated
— Action predicate

— Principal is authorized to perform actions that pass the
action predicated

¢ Assertions can be signed by keys
— Signed assertions are credentials

02230 Data Security 28

Assertion Syntax

e principal is-authorized-for predicate

{signed-by authorizer}

— The keys in principal are authorized for actions that pass the

predicate according to authorizer

* Exmple of Keynote assertion syntax:

Authorizer: <keyword POLICY or signer’s public-key>

Licensees: <principal, tests signer keys>

Conditions: <trust-expression, tests action attributes>

Signature: <encoding of signature, for signed credentials>

02230 Data Security 29

Compliance Checking Semnatics

¢ An action is allowed if any policy assertion allows it

¢ An assertion is considered to allow an action if its
predicate passes and either
— The action was directly requested by the assertions licensees

— The action was approved by some other assertion signed by
the licensees

02230 Data Security 30

Compliance Checking Process

¢ Application collects appropriate assertions
— Local, trusted root policy assertions
— Credentials signed by someone else
» Application forms action description
— Collection of free form attributes
— Associated with principal identifier (ID or key)
» Compliance Checker finds compliance value

— Evaluates action against conditions in assertions forming a
graph between root policy and requestor

— Binary: allowed/denied, or multi-valued

02230 Data Security 31

Assertion Monotonicity

e Assertions are monotone

— Adding an assertion can never cause an acction to become
disallowed

— Deleting an assertion will never cause a disallowed action to
become allowed
— Nothing is allowed unless explicitly allowed by an assertion
¢ Implications of monotonicity
— Safe for distributed systems
* Missing assertions cannot cause policy violations
— Set of allowing assertions constitute “proof of compliance”

« Clients can collect appropriate signed assertions and present
them to server

— No conflicts
« If an action can be allowed it will be allowed

02230 Data Security 32

Summary of Trust Management

* Appropriate for large-scale distributed systems
— Decentralized policy specification and storage
— Decentralized (autonomous) policy enforcement
¢ Provides both decision and reason for decision
— List of credentials used to authorize request
» Facilitates dynamic evolution of policy
— Incremental addition of assertions allows policies to evolve,
e.g., adding new principals/roles/permissions/resources
— Well suited for dynamic open systems (pervasive computing)

02230 Data Security 33

