
Distributed Termination
Robin Sharp
robin@imm.dtu.dk

Systems Security Group

Informatics and Mathematical Modelling

Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark.

Course 02221/02222, DTU, Spring 2009. – p. 1/1

DISTRIBUTED TERMINATION

GIVEN:
A set of disjoint processes (no shared variables!).
Possibility of communication between processes.

REQUIRED:
A technique to decide when a task, which the
processes cooperate to solve, is finished.

NOTE: This is not trivial in a distributed system!

Course 02221/02222, DTU, Spring 2009. – p. 2/1

ASSUMPTIONS

Global termination when a post-condition B(ȳ) holds,
where ȳ is GLOBAL STATE.

ȳ can be divided into n (≥ 2) disjoint states ȳ1, ȳ2, . . . , ȳn

There are n predicates Bi(ȳi), i = 1, 2, . . . , n such that:

(
n∧

i=1

Bi(ȳi)) ⇒ B(ȳ)

There are n processes P1, P2, . . . , Pn with state vectors
ȳ1, ȳ2, . . . , ȳn which can reach states where
Bi(ȳi), i = 1, 2, . . . , n hold after finite time.
The necessary communication to achieve this is called
BASIC COMMUNICATION.

Course 02221/02222, DTU, Spring 2009. – p. 3/1

FRANCEZ’ CLAIM
NOTE: Uses old-fashioned CSP (1978) notation!!

Program P :: [P1 ‖ P2 ‖ . . . ‖ Pn] will be a solution if termination
can be forced as soon as each Pi reaches a state where Bi holds.
This state is called a FINAL STATE.

Each Pi is repetitive, of form:

Pi = ∗[gi1 → Si1

[]gi2 → Si2

[] . . .
[]giki

→ Siki

where each guard gij may involve Boolean conditions and BASIC
COMMUNICATION

In stable state ∀i · Bi(ȳi), all Pi are in their outer level without any
ready guard. So we assume:

No processes in FINAL STATES perform BASIC COMM.

Course 02221/02222, DTU, Spring 2009. – p. 4/1

TERMINATION CONDITIONS
Processes Pi establish termination by using CONTROL
COMMUNICATION in addition to their BASIC COMMUNICATION.

Assume that CONTROL COMMUNICATION does not require
extra COMM. CHANNELS!

For given process Pi there are two termination possibilities:
ENDOTERMINATION: Reachability of a final state is determined by a

predicate over Pi’s initial state Bi(ȳ0i).
EXOTERMINATION: Termination depends on each member of a

TERMINATION DEPENDENCY SET:

T = {Pi1 , Pi2 , . . . , Pik
}, k > 0

having terminated.

Course 02221/02222, DTU, Spring 2009. – p. 5/1

TERMINATION CONDITIONS
Processes Pi establish termination by using CONTROL
COMMUNICATION in addition to their BASIC COMMUNICATION.

Assume that CONTROL COMMUNICATION does not require
extra COMM. CHANNELS!

For given process Pi there are two termination possibilities:
ENDOTERMINATION: Reachability of a final state is determined by a

predicate over Pi’s initial state Bi(ȳ0i).
EXOTERMINATION: Termination depends on each member of a

TERMINATION DEPENDENCY SET:

T = {Pi1 , Pi2 , . . . , Pik
}, k > 0

having terminated.
We can similarly define:
ENDONONTERMINATION: No final state can be reached.
EXONONTERMINATION: At least one process in the TDS does not

terminate.
Course 02221/02222, DTU, Spring 2009. – p. 5/1

GRAPHS
COMMUNICATION GRAPH, GP defined for system
P :: [P1 ‖ P2 ‖ . . . ‖ Pn] by:

Each process Pi corresponds to a node in GP .
Each process pair < Pi, Pj > for which communication can
take place from Pi to Pj , corresponds to an edge in GP .

NOTE: GP can be determined syntactically from P .

Course 02221/02222, DTU, Spring 2009. – p. 6/1

GRAPHS
COMMUNICATION GRAPH, GP defined for system
P :: [P1 ‖ P2 ‖ . . . ‖ Pn] by:

Each process Pi corresponds to a node in GP .
Each process pair < Pi, Pj > for which communication can
take place from Pi to Pj , corresponds to an edge in GP .

NOTE: GP can be determined syntactically from P .

TERMINATION GRAPH, TP defined for system P by:
Each process Pi corresponds to a node in GP .
For each edge (Pi, Pj) in GP :

(Pi, Pj) ∈ TP ⇔ Pi ∈ TDSj

(Pj , Pi) ∈ TP ⇔ Pj ∈ TDSi

NOTE: TP reflects all termination dependencies in P , and may
depend on initial state.
All nodes corresponding to ENDOTERMINATING processes
are sources in TP (i.e. with in-degree=0).

Course 02221/02222, DTU, Spring 2009. – p. 6/1

GRAPHS (2)

THEOREM: P TERMINATES FOR (ȳ1, . . . , ȳn) ONLY IF TP IS
ACYCLIC.

PROOF: If TP contains a loop, deadlock can take place, as all nodes
on loop correspond to processes which are
EXONONTERMINATING for ȳ.

Course 02221/02222, DTU, Spring 2009. – p. 7/1

GRAPHS (2)

THEOREM: P TERMINATES FOR (ȳ1, . . . , ȳn) ONLY IF TP IS
ACYCLIC.

PROOF: If TP contains a loop, deadlock can take place, as all nodes
on loop correspond to processes which are
EXONONTERMINATING for ȳ.

What should we conclude from all this?

Course 02221/02222, DTU, Spring 2009. – p. 7/1

GRAPHS (2)

THEOREM: P TERMINATES FOR (ȳ1, . . . , ȳn) ONLY IF TP IS
ACYCLIC.

PROOF: If TP contains a loop, deadlock can take place, as all nodes
on loop correspond to processes which are
EXONONTERMINATING for ȳ.

What should we conclude from all this?

If P terminates for ȳ, a partial ordering is defined such that when
all ENDOTERMINATING processes terminate, then all processes
in their TDSs terminate, etc.

Endoterm. processes
TP

(must terminate first)

This partial ordering defines a TERMINATION WAVE. . .
Course 02221/02222, DTU, Spring 2009. – p. 7/1

STRATEGY

Basic idea for ensuring orderly termination:

1. Choose termination dependencies among P1, P2, . . . , Pn

such that TP is acyclic.

2. Designate arbitrary Pi0 which collects information about
whether all others are in a state where Bi(ȳi) holds.

3. When this happens, Pi0 must terminate, and this initiates
TERMINATION WAVE:

All processes in Pi0’s TDS terminate,
then all processes in their TDSs
and so on.

Course 02221/02222, DTU, Spring 2009. – p. 8/1

STRATEGY (2)
Need to find a SPANNING TREE in undirected graph
corresponding to GP . Then:
1. Root process in tree initiates CONTROL WAVE to all its

successors in the tree.
2. Wave propagates past Pj if Bj(ȳj) holds.

Passage of wave FREEZES all BASIC COMMUNICATION.
3. Each node in tree reports back to its parent whether its

successors have terminated.
4. When root process receives POSITIVE ANSWER, it

terminates and this initiates TERMINATION WAVE.
5. If root process receives NEGATIVE ANSWER, an

UNFREEZING WAVE is propagated to allow BASIC
COMMUNICATION again.

At least one more BASIC COMMUNICATION must then take
place before a new CONTROL WAVE can be initiated.

Course 02221/02222, DTU, Spring 2009. – p. 9/1

WHAT MUST P LOOK LIKE?

For this to work, P must have a particular form.

In general, this will not be true of the system P from the
original algorithm whose termination is desired.

Course 02221/02222, DTU, Spring 2009. – p. 10/1

WHAT MUST P LOOK LIKE?

For this to work, P must have a particular form.

In general, this will not be true of the system P from the
original algorithm whose termination is desired.

To construct the final system, say P̄ :
1. Choose T ∗

P = arbitrary spanning tree in undirected G′
P .

2. Modify P1, P2, . . . , Pn to P̄1, P̄2, . . . , P̄n, where:
TDSi = {parent of P̄i in T ∗

P}.
Root of T ∗

P is ENDOTERMINATING.
Each P̄i is derived from Pi by adding a CONTROL
SECTION, Ci, consisting of further alternatives in Pi.

CONTROL SECTION deals with CONTROL WAVE,
TERMINATION WAVE, UNFREEZING WAVE etc.
For details, see Francez’ paper.

Course 02221/02222, DTU, Spring 2009. – p. 10/1

DISTRIBUTED PARTITION SORT

Disjoint partitioning of S = S1 + S2 + . . . + Sn,
where cardinality of Si, |Si| = mi.

After sorting:

∀i, j (1 ≤ i < j ≤ n) · (∀p, q · (p ∈ Si ∧ q ∈ Sj ⇒ p < q))

∧ ∀i (1 ≤ i ≤ n) · (|Si| = mi)

Or, equivalently:

∀i, j (1 ≤ i < n) · (max (Si) < min (Si+1))
∧ ∀i (1 ≤ i ≤ n) · (|Si| = mi)

Or, alternatively
∧n

i=1 Bi(Si, lini)

where

{
Bi(Si, lini)

def= max (Si) ≤ lini ∧ |Si| = mi (1 ≤ i < n)

Bn
def= true

where lini is the latest value received from Pi+1
Course 02221/02222, DTU, Spring 2009. – p. 11/1

DPS ALGORITHM
Pi :: update; lin := −∞;

∗[mx > lin;Pi+1!mx → Si := Si − {mx};Pi+1?lin;

Si := Si + {lin};update

[]Pi−1?l → Si := Si + {l};update;Pi−1!mn;

Si := Si − {mn};update;Pi−1!mn;

[]Pi+1?lin → skip]

P1 :: update; lin := −∞;

∗[mx > lin;P2!mx → S1 := S1 − {mx};P2?lin;

S1 := S1 + {lin};update

[]P2?lin → skip]

Pn :: update;

∗[Pn−1?l → Sn := Sn + {l};update;Pn−1!mn;

Sn := Sn − {mn};update;Pn−1!mn]

where update
def
= mx := max (Si);mn := min (Si);

Course 02221/02222, DTU, Spring 2009. – p. 12/1

	DISTRIBUTED TERMINATION
	ASSUMPTIONS
	FRANCEZ' CLAIM
	TERMINATION CONDITIONS
	TERMINATION CONDITIONS

	GRAPHS
	GRAPHS

	GRAPHS (2)
	GRAPHS (2)
	GRAPHS (2)

	STRATEGY
	STRATEGY (2)
	WHAT MUST P LOOK LIKE?
	WHAT MUST P LOOK LIKE?

	DISTRIBUTED PARTITION SORT
	DPS ALGORITHM

