Distributed Termination

Robin Sharp

robin@imm.dtu.dk

Systems Security Group
Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark.

DISTRIBUTED TERMINATION

GIVEN:

- A set of disjoint processes (no shared variables!).
- Possibility of communication between processes.

REQUIRED:

- A technique to decide when a task, which the processes cooperate to solve, is finished.
- NOTE: This is not trivial in a distributed system!

ASSUMPTIONS

- Global termination when a post-condition $B(\bar{y})$ holds, where \bar{y} is *GLOBAL STATE*.
- \bar{y} can be divided into $n \ (\geq 2)$ disjoint states $\bar{y}_1, \ \bar{y}_2, \ldots, \bar{y}_n$
- There are n predicates $B_i(\bar{y}_i), i = 1, 2, ..., n$ such that:

$$(\bigwedge_{i=1}^{n} B_i(\bar{y}_i)) \Rightarrow B(\bar{y})$$

• There are n processes P_1, P_2, \ldots, P_n with state vectors $\bar{y}_1, \ \bar{y}_2, \ldots, \bar{y}_n$ which can reach states where $B_i(\bar{y}_i), \ i=1,2,\ldots,n$ hold after finite time. The necessary communication to achieve this is called $BASIC\ COMMUNICATION$.

FRANCEZ' CLAIM

NOTE: Uses old-fashioned CSP (1978) notation!!

- ▶ Program $P :: [P_1 \parallel P_2 \parallel \dots \parallel P_n]$ will be a solution if termination can be forced as soon as each P_i reaches a state where B_i holds. This state is called a *FINAL STATE*.
- \blacksquare Each P_i is repetitive, of form:

$$P_{i} = *[g_{i1} \rightarrow S_{i1}]$$

$$\|g_{i2} \rightarrow S_{i2}\|$$

$$\| \dots \|g_{ik_{i}} \rightarrow S_{ik_{i}}\|$$

where each guard g_{ij} may involve Boolean conditions and BASIC COMMUNICATION

■ In stable state $\forall_i \cdot B_i(\bar{y}_i)$, all P_i are in their outer level without any ready guard. So we assume:

No processes in FINAL STATES perform BASIC COMM.

TERMINATION CONDITIONS

- Processes P_i establish termination by using CONTROL COMMUNICATION in addition to their BASIC COMMUNICATION.
- Assume that CONTROL COMMUNICATION does not require extra COMM. CHANNELS!
- ullet For given process P_i there are two termination possibilities:

ENDOTERMINATION: Reachability of a final state is determined by a predicate over P_i 's initial state $B_i(\bar{y_{0i}})$.

EXOTERMINATION: Termination depends on each member of a *TERMINATION DEPENDENCY SET*:

$$T = \{P_{i_1}, P_{i_2}, \dots, P_{i_k}\}, \quad k > 0$$

having terminated.

TERMINATION CONDITIONS

- ullet Processes P_i establish termination by using CONTROL COMMUNICATION in addition to their BASIC COMMUNICATION.
- Assume that CONTROL COMMUNICATION does not require extra COMM. CHANNELS!
- ullet For given process P_i there are two termination possibilities:

ENDOTERMINATION: Reachability of a final state is determined by a predicate over P_i 's initial state $B_i(\bar{y_{0i}})$.

EXOTERMINATION: Termination depends on each member of a *TERMINATION DEPENDENCY SET*:

$$T = \{P_{i_1}, P_{i_2}, \dots, P_{i_k}\}, \quad k > 0$$

having terminated.

We can similarly define:

ENDONONTERMINATION: No final state can be reached.

EXONONTERMINATION: At least one process in the *TDS* does not terminate.

GRAPHS

- COMMUNICATION GRAPH, G_P defined for system $P :: [P_1 \parallel P_2 \parallel \ldots \parallel P_n]$ by:
 - Each process P_i corresponds to a node in G_P .
 - Each process pair $\langle P_i, P_j \rangle$ for which communication can take place from P_i to P_j , corresponds to an edge in G_P .

NOTE: G_P can be determined syntactically from P.

GRAPHS

- ullet COMMUNICATION GRAPH, G_P defined for system
 - $P :: [P_1 \parallel P_2 \parallel \ldots \parallel P_n]$ by:
 - Each process P_i corresponds to a node in G_P .
 - Each process pair $\langle P_i, P_j \rangle$ for which communication can take place from P_i to P_i , corresponds to an edge in G_P .

NOTE: G_P can be determined syntactically from P.

- **IDENTIFY** TERMINATION GRAPH, T_P defined for system P by:
 - Each process P_i corresponds to a node in G_P .
 - For each edge (P_i, P_j) in G_P :

$$(P_i, P_j) \in T_P \Leftrightarrow P_i \in TDS_j$$

 $(P_j, P_i) \in T_P \Leftrightarrow P_j \in TDS_i$

NOTE: T_P reflects all termination dependencies in P, and may depend on initial state.

All nodes corresponding to ENDOTERMINATING processes are sources in T_P (i.e. with in-degree=0).

GRAPHS (2)

THEOREM: P TERMINATES FOR $(\bar{y}_1, \ldots, \bar{y}_n)$ ONLY IF T_P IS ACYCLIC.

PROOF: If T_P contains a loop, deadlock can take place, as all nodes on loop correspond to processes which are EXONONTERMINATING for \bar{y} .

GRAPHS (2)

THEOREM: P TERMINATES FOR $(\bar{y}_1, \ldots, \bar{y}_n)$ ONLY IF T_P IS ACYCLIC.

PROOF: If T_P contains a loop, deadlock can take place, as all nodes on loop correspond to processes which are EXONONTERMINATING for \bar{y} .

What should we conclude from all this?

GRAPHS (2)

THEOREM: P TERMINATES FOR $(\bar{y}_1, \dots, \bar{y}_n)$ ONLY IF T_P IS ACYCLIC.

PROOF: If T_P contains a loop, deadlock can take place, as all nodes on loop correspond to processes which are EXONONTERMINATING for \bar{y} .

- What should we conclude from all this?
- If P terminates for \bar{y} , a partial ordering is defined such that when all ENDOTERMINATING processes terminate, then all processes in their TDSs terminate, etc.

This partial ordering defines a *TERMINATION WAVE...*

STRATEGY

Basic idea for ensuring orderly termination:

- 1. Choose termination dependencies among P_1, P_2, \ldots, P_n such that T_P is acyclic.
- 2. Designate arbitrary P_{i0} which collects information about whether all others are in a state where $B_i(\bar{y}_i)$ holds.
- 3. When this happens, P_{i0} must terminate, and this initiates *TERMINATION WAVE*:

All processes in P_{i0} 's TDS terminate, then all processes in their TDSs and so on.

STRATEGY (2)

- Need to find a SPANNING TREE in undirected graph corresponding to G_P . Then:
 - 1. Root process in tree initiates *CONTROL WAVE* to all its successors in the tree.
 - 2. Wave propagates past P_j if $B_j(\bar{y}_j)$ holds. Passage of wave *FREEZES* all *BASIC COMMUNICATION*.
 - 3. Each node in tree reports back to its parent whether its successors have terminated.
 - 4. When root process receives *POSITIVE ANSWER*, it terminates and this initiates *TERMINATION WAVE*.
 - 5. If root process receives *NEGATIVE ANSWER*, an *UNFREEZING WAVE* is propagated to allow *BASIC COMMUNICATION* again.

At least one more *BASIC COMMUNICATION* must then take place before a new *CONTROL WAVE* can be initiated.

WHAT MUST P LOOK LIKE?

- For this to work, P must have a particular form.
- In general, this will not be true of the system P from the original algorithm whose termination is desired.

WHAT MUST P LOOK LIKE?

- For this to work, P must have a particular form.
- In general, this will not be true of the system P from the original algorithm whose termination is desired.
- ullet To construct the final system, say \bar{P} :
 - 1. Choose T_P^* = arbitrary spanning tree in undirected G_P' .
 - 2. Modify P_1, P_2, \ldots, P_n to $\bar{P}_1, \bar{P}_2, \ldots, \bar{P}_n$, where:
 - $TDS_i = \{ parent of P_i in T_P^* \}.$
 - Root of T_P^* is ENDOTERMINATING.
 - Each P_i is derived from P_i by adding a *CONTROL* SECTION, C_i , consisting of further alternatives in P_i .

CONTROL SECTION deals with CONTROL WAVE, TERMINATION WAVE, UNFREEZING WAVE etc. For details, see Francez' paper.

DISTRIBUTED PARTITION SORT

- Disjoint partitioning of $S = S_1 + S_2 + \ldots + S_n$, where cardinality of S_i , $|S_i| = m_i$.
- After sorting:

$$\forall i, j \ (1 \le i < j \le n) \quad \cdot \quad (\forall p, q \cdot (p \in S_i \land q \in S_j \Rightarrow p < q))$$

$$\land \quad \forall i \ (1 \le i \le n) \quad \cdot \quad (|S_i| = m_i)$$

Or, equivalently:

$$\forall i, j \ (1 \le i < n) \quad \cdot \quad (\max(S_i) < \min(S_{i+1}))$$

 $\land \quad \forall i \ (1 \le i \le n) \quad \cdot \quad (|S_i| = m_i)$

Or, alternatively $\bigwedge_{i=1}^n B_i(S_i, lin_i)$

where
$$\begin{cases} \frac{B_i(S_i, lin_i)}{=} \max_i (S_i) \leq lin_i \wedge |S_i| = m_i & (1 \leq i < n) \\ \frac{def}{B_n} & = \text{true} \end{cases}$$

where lin_i is the latest value received from P_{i+1}

DPS ALGORITHM


```
P_i
           :: update; lin := -\infty;
               *|mx > lin; P_{i+1}!mx \rightarrow S_i := S_i - \{mx\}; P_{i+1}?lin;
                                S_i := S_i + \{lin\}; update
                 P_{i-1}?l \rightarrow S_i := S_i + \{l\}; update; P_{i-1}!mn;
                                S_i := S_i - \{mn\}; update; P_{i-1}!mn;
                 ||P_{i+1}?lin \rightarrow \mathsf{skip}||
P_1
           :: update; lin := -\infty;
               *[mx > lin; P_2!mx \rightarrow S_1 := S_1 - \{mx\}; P_2?lin;
                                S_1 := S_1 + \{lin\}; update
                 ||P_2?lin \rightarrow \mathsf{skip}||
P_n
           :: update;
               *[P_{n-1}?l \to S_n := S_n + \{l\}; update; P_{n-1}!mn;
                                S_n := S_n - \{mn\}; update; P_{n-1}!mn
               update \stackrel{\text{def}}{=} mx := \max(S_i); mn := \min(S_i);
where
```

Course 02221/02222, DTU, Spring 2009. – p. 12