
DTU Informatics
Department of Informatics and Mathematical Modelling

Coordination and Agreement

12.1 Introduction
12.2 Distributed Mutual Exclusion
12.3 Elections
12.4 Multicast Communication
12.5 Consensus and related problems

DTU Informatics
Department of Informatics and Mathematical Modelling

AIM: Coordination and/or Agreement

• Collection of algorithms whose goals vary

but which share an aim that is fundamental in distributed systems

for a set of distributed processes to coordinate their actions or to agree
on one or more values.

2

DTU Informatics
Department of Informatics and Mathematical Modelling

Failure Assumptions

• Each pair of processes is connected by reliable channels.

‣ A reliable channel eventually delivers a message to the recipient’s input
buffer.

• No process failure implies a threat to the other processes’ ability to
communicate.

‣ None of the processes depends upon another to forward messages.

• Unless we state otherwise, processes only fail by crashing.

3

DTU Informatics
Department of Informatics and Mathematical Modelling

Distributed Mutual Exclusion

DTU Informatics
Department of Informatics and Mathematical Modelling

Problem: Coordinate Access to Shared Resources

• Distributed processes often need to coordinate their activities.

• If a collection of processes share a resource or collection of resources, then
often mutual exclusion is required to prevent interference and ensure
consistency when accessing the resources.

• Critical section problem in the domain of operating systems.

• BUT in a distributed system, neither shared variables nor facilities supplied by
a single local kernel can be used to solve the problem.

• We require a distributed mutual exclusion: one that is based solely on
message passing!!!

5

DTU Informatics
Department of Informatics and Mathematical Modelling

Model (Without Failures)

• We consider a system of N processes pi, i =1,...,N that do not share variables.

• The processes access common resources, but they do so in a critical section.

• The system is asynchronous.

• Processes do not fail.

• Message delivery is reliable: any message sent is eventually delivered intact,
exactly once.

• Client processes are well-behaved and spend a finite time accessing
resources within their CSs.

6

DTU Informatics
Department of Informatics and Mathematical Modelling

Critical Section (CS)

• The application-level protocol for executing a CS is as follows:

‣ enter(): enter a critical section - block if necessary.

‣ resourceAccess(): access shared resources in critical section.

‣ exit(): leave critical section - other processes may now enter.

7

DTU Informatics
Department of Informatics and Mathematical Modelling

Requirements for ME

8

• A mutual exclusion algorithm should satisfy the following properties:

‣ [ME1] Safety: at most one process can execute in the CS at a time.

‣ [ME2] Liveness: requests to enter and exit the CS eventually succeed.

‣ [ME3] Ordering: if one request to enter the CS happened-before another,
then entry to the CS is granted in that order.

• The first property is absolutely necessary (correctness).

• The other two properties are considered important in ME algorithms.

DTU Informatics
Department of Informatics and Mathematical Modelling

On ME Requirements: Liveness

9

• [ME2] Liveness: requests to enter and exit the CS eventually succeed.

• Condition ME2 implies freedom from both deadlock and starvation.

‣ A deadlock would involve two or more processes becoming stuck
indefinitely while attempting to enter or exit the critical section, by virtue of
their mutual interdependence.

‣ Even without a deadlock, a poor algorithm might lead to starvation: the
indefinite postponement of entry for a process that has requested it.

• The absence of starvation is a fairness condition.

DTU Informatics
Department of Informatics and Mathematical Modelling

On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another, then
entry to the CS is granted in that order.

• If a solution grants entry to the CS in happened-before order, and if all the
requests are related by happened-before, then it is not possible for a process
to enter the CS more than once while another waits to enter.

10

DTU Informatics
Department of Informatics and Mathematical Modelling

On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another, then
entry to the CS is granted in that order.

• If a solution grants entry to the CS in happened-before order, and if all the
requests are related by happened-before, then it is not possible for a process
to enter the CS more than once while another waits to enter.

10

• Example: a multi-threaded process may continue with other processing while
a thread waits to be granted entry to a CS.

‣ During this time, it might send a message to another process, which
consequently also tries to enter the CS.

‣ ME3 specifies that the first process be granted access before the second.

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance Criteria

• Algorithms for ME can be evaluated by several metrics, such as:

‣ The bandwidth consumed, which is proportional to the number of
messages sent in each entry and exit operation.

‣ The client delay incurred by a process at each entry and exit operation.

‣ The algorithm’s effect upon the throughput of the system: the rate at which
the collection of processes as a whole can access the CS, given that some
communication is necessary between successive processes.

- Measured using the synchronization delay (SD) between one process
exiting the CS and the next process entering it.

- The throughput is greater when the synchronization delay is shorter.

11

throughput = 1

(SD + E)
where E = average CS execution time

DTU Informatics
Department of Informatics and Mathematical Modelling

Design of Distributed ME Algorithms

• Complex because these algorithms have to deal with

‣ unpredictable message delays

‣ incomplete knowledge of the system state

• Three basic approaches:

‣ Token based approaches

‣ Non-token based approaches

‣ Quorum based approaches

12

DTU Informatics
Department of Informatics and Mathematical Modelling

Distributed Mutual Exclusion

Token based approaches

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed ME] Token Based Algorithms

• A unique token (PRIVILEGE msg) is shared among the processes.

• A process is allowed to enter its CS if it possesses the token.

• The process continues to hold the token until the execution of the CS is over.

• Mutual exclusion is ensured because the token is unique.

• The algorithms based on this approach essentially differ in the way a process
carries out the search for the token.

14

DTU Informatics
Department of Informatics and Mathematical Modelling

The Central Server Algorithm

• The simplest way to achieve mutual exclusion is to employ a server that
grants permission to enter the CS.

15

• To enter a CS, a process sends a requests to the server and awaits a reply from it.

• The reply constitutes a token signifying permission to enter the CS.

• If no other process has the token at the time of the request then the server replies
immediately, granting the token.

• If the token is currently held by another process, then the server does not reply but queues
the request.

• On exiting the CS, a message is sent to the server, giving it back the token.

• If the queue of waiting process is not empty, then the server chooses the oldest entry in the
queue, removes it and replies to the corresponding process.

• The chosen process then holds the token. Algorithm

DTU Informatics
Department of Informatics and Mathematical Modelling

[The Central Server Algorithm] Example

• Process p1 does not currently require entry to the CS.

16

• Process p2‘s request has been appended to the queue, which already
contained p4‘s request.

• Process p3 exits the CS.

• The server removes p4‘s entry and
grants permission to enter to p4 by
replying to it.

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance of the Central Server Algorithm

• Entering the CS:

‣ It takes 2 messages: a request followed by a grant.

‣ It delays the requesting process (client) by the time for this round-trip.

• Exiting the CS:

‣ It takes 1 release message.

‣ Assuming asynchronous message passing, this does not delay the exiting
process.

• The server may become a performance bottleneck for the system as a whole.

‣ Synchronization delay: time taken for a round-trip (a release msg to the
server, followed be a grant msg to the next process to enter the CS).

17

DTU Informatics
Department of Informatics and Mathematical Modelling

• Provide a formal specification in CSP of the central server algorithm.

• Given the assumption that no failures occur, informally discuss:

‣ why the safety and liveness conditions [ME1 and ME2] are met by the
central server algorithm

‣ the algorithm does not satisfy property ME3

18

Homework

DTU Informatics
Department of Informatics and Mathematical Modelling

A Ring-Based Algorithm

• Logical ring: one of the simplest ways to arrange a ME between N processes
without requiring an additional process.

19

Each process pi has a
communication channel
to the next process in
the ring, p(i + 1) mod N.

• The ring topology may be unrelated to the physical interconnections between
the underlying computers.

• If a process does not require to enter the CS when
it receives the token, then it immediately forwards
the token to its neighbour.

• A process that requires the token waits until it
receives it, but retains it.

• To exit the CS, the process sends the token on to
its neighbour.

• Basic idea: exclusion is conferred by obtaining a
token in the form of a message from process to
process in a single direction around the ring.

Algorithm

DTU Informatics
Department of Informatics and Mathematical Modelling

• Given the assumption that no failures occur, informally discuss why the safety
and liveness conditions [ME1 and 2] are met by the ring-based algorithm.

• Informally discuss why the ring-based algorithm does not necessarily satisfy
the ordering property [ME3].

20

Homework

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance of the Ring-Based Algorithm

• The algorithm continuously consumes network bandwidth, expect when a
process is inside the critical section.

‣ The processes send messages around the ring even when no process
requires entry to the CS.

• The delay experienced by a process requesting entry to the CS is between 0
messages (when it has just received the token) and N messages (when it has
just passed on the token).

• To exit the CS requires only one message.

• The synchronization delay between one process’s exit from the CS and the
next process’s entry is anywhere from 1 to N message transmissions.

21

DTU Informatics
Department of Informatics and Mathematical Modelling

• Provide a formal specification in CSP of the ring-based algorithm.

22

Homework

DTU Informatics
Department of Informatics and Mathematical Modelling

Distributed Mutual Exclusion

Non-token based approaches

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed ME] Non-token Based Algorithms

• Two or more successive rounds of messages are exchanged among the
processes to determine which process will enter the CS next.

• A process enters the CS when an assertion, defined on its local variables,
becomes true.

• Mutual exclusion is enforced because the assertion becomes true only at one
site at any given time.

24

DTU Informatics
Department of Informatics and Mathematical Modelling

Lamport’s Algorithm

• Requires communication channels to deliver messages in FIFO order.

• Satisfies conditions ME1, ME2 and ME3.

• Based on Lamport logical clocks: timestamped requests for entering the CS.

• Timestamp: (clock value, id of the process)

• Every process pi keeps a queue, request_queuei, which contains mutual
exclusion requests ordered by their timestamps.

• The algorithm executes CS requests in the increasing order of timestamps.

• Timestamps are totally ordered!! Example: (1, 1) < (1, 2)

25

DTU Informatics
Department of Informatics and Mathematical Modelling

Extension of Happened-Before Relation (→)

• → defines a partial ordering of events in the system.

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’).

CR2: If a is the sending of a message by pi and b is the receipt of the same
message by pj, then Li(a) < Lj(b).

CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then L
(e) < L(e’’).

• A total ordering ⇒ requires the further rule:

CR4: a (in pi) ⇒ b (in pj) if and only if

 either Li(a) < Lj(b)
 or Li(a) = Lj(b) ∧ pi ≺ pj

for some suitable ordering ≺ of the processes.

26

DTU Informatics
Department of Informatics and Mathematical Modelling

Lamport’s Algorithm [1978]

27

Requesting the CS
Process pi updates its local clock and timestamps the request (tsi)
Process pi broadcasts a REQUEST(tsi, i) to all the other processes
Process pi places the request on request_queuei

On Receiving REQUEST(tsi, i) from a process pi

Process pj places pi’s request on request_queuej

Process pj returns a timestamped REPLY msg to pi

Executing the CS
Process pi enters the CS when the following two conditions hold:
‣ L1: pi has received a msg with timestamp larger than (tsi, i) from all other processes
‣ L2: pi’s request is at the top of request_queuei

Releasing the CS
Process pi removes its request from the top of request_queuei

Process pi broadcasts a timestamped RELEASE msg to all other processes

On Receiving RELEASE from a process pi

Process pj removes pi’s request from its request queue request_queuej

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: Entering a CS

28

p1

p2

p3

• p1 and p2 send out REQUEST messages for the CS to the other processes

REQUEST(1, 1)

REQUEST(1, 2)

(1, 1)request_queue1

(1, 2)request_queue2

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: Entering a CS

29

• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: Entering a CS

29

• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)

p1 enters the CS

‣ L1: p1 has received a msg with timestamp larger
than (1, 1) from all other processes

‣ L2: p1’s request is at the top of request_queue1

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: Exiting a CS

30

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2 (1, 1)

p1 exits the CS

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: Exiting a CS

31

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

On Receiving RELEASE from process p1

• Process p2 removes p1’s request from its request
queue request_queue2

DTU Informatics
Department of Informatics and Mathematical Modelling

The Algorithm in Action: p2 enters the CS...

32

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

p2 enters the CS

‣ L1: p2 has received a msg with timestamp larger
than (1, 2) from all other processes

‣ L2: p2’s request is at the top of request_queue2

DTU Informatics
Department of Informatics and Mathematical Modelling

Theorem

Lamport’s algorithm achieves mutual exclusion (property ME1).

Proof [by contradiction]:

- suppose two processes pi and pj are executing the CS concurrently

➡L1 and L2 must hold at both sites concurrently

➡at some instant in time, say t, both pi and pj have their own requests at the
top of their request_queue and condition L1 holds at them

- Without loss of generality, assume that (tsi, i) < (tsj, j)

- From L1 and FIFO property, at instant t the request of pi must be in
request_queuej when pj was executing its CS

➡pj’s own request is at the top of request_queuej when a smaller timestamp
request, (tsi, i) from pi, is present in the queue - a contradiction!!

33

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance of Lamport’s Algorithm

• For each CS execution, the algorithm requires

‣ (N - 1) REQUEST messages

‣ (N - 1) REPLY messages

‣ (N - 1) RELEASE messages

• Thus, the algorithm requires 3(N - 1) messages per CS invocation.

• The client delay in requesting entry is a round-trip time.

• The synchronization delay is 1 msg transmission (average message delay).

34

DTU Informatics
Department of Informatics and Mathematical Modelling

Ricart and Agrawala’s Algorithm [1981]

• Basic idea: processes that require entry to a CS multicast a request message,
and can enter it only when all the other processes have replied to this
message.

• BUT the algorithm does NOT require communication channels to be FIFO.

• Each process pi keeps a Lamport clock, updated according to LC1 and LC2.

• Messages requesting entry are of the form <T, pi>, where T is the sender’s
timestamp and pi is the sender’s identifier.

• Every process records its state of being outside the CS (RELEASED), wanting
entry (WANTED) or being in the CS (HELD) in a variable state.

35

DTU Informatics
Department of Informatics and Mathematical Modelling

Ricart and Agrawala’s Algorithm [1981]

36

On initialization
state := RELEASED;

To enter the Critical Section
state := WANTED;
Multicast REQUEST to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then
	 queue request from pi without replying;
else
	 reply immediately to pi;
end if

To exit the Critical Section
state := RELEASED;
reply to any queued requests;

DTU Informatics
Department of Informatics and Mathematical Modelling

Ricart and Agrawala’s Algorithm [1981]

36

On initialization
state := RELEASED;

To enter the Critical Section
state := WANTED;
Multicast REQUEST to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then
	 queue request from pi without replying;
else
	 reply immediately to pi;
end if

To exit the Critical Section
state := RELEASED;
reply to any queued requests;

If two or more processes request
entry at the same time, then
whichever process’s request
bears the lowest timestamp will
be the first to collect N-1 replies,
granting it entry next.

In case of equal timestamps, the
requests are ordered according
to the process identifiers.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

37

• p3 not interested in entering the CS

• p1 and p2 request it concurrently

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

38

• The timestamp of p1’s request is 41, that of p2 is 34.

• When p3 receives their requests, it replies immediately.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

39

• When p2 receives p1’s request, it finds its own request has the lower
timestamp (34 < 41), and so does not reply, holding p1 off.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

40

• However, p1 finds that p2’s request has a lower timestamp than that of its own
request (34 < 41) and so replies immediately.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

41

• On receiving the 2nd reply, p2 can enter the CS.

DTU Informatics
Department of Informatics and Mathematical Modelling

[Ricart and Agrawala’s Algorithm] Example

42

• When p2 exits the CS, it will reply to p1’s request and so grant it entry.

DTU Informatics
Department of Informatics and Mathematical Modelling

• Prove that Ricart and Agrawala’s algorithm achieves the safety property ME1.

Idea: if it were possible for two processes pi and pj (i ≠ j) to enter the CS at the
same time, then both of those processes would have to have replied to the
other.

But since the pairs <Ti, pi> are totally ordered, this is impossible.

• Verify, in a similar way, that the algorithm also meets requirements ME2 and
ME3.

43

Homework

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance of the Ricart-Agrawala’s Algorithm

• Gaining entry takes 2(N-1) messages:

‣ N-1 to multicast the request

‣ followed by N-1 replies

• The client delay in requesting entry is a round-trip time.

• The synchronization delay is 1 message transmission time.

• Ricart and Agrawala refined the algorithm so that it requires N messages to
obtain entry in the worst (and common) case.
[Raynal, M. (1988). Distributed Algorithms and Protocols. Wiley]

44

DTU Informatics
Department of Informatics and Mathematical Modelling

Distributed Mutual Exclusion

Quorum-Based Mutual Exclusion Algorithms

DTU Informatics
Department of Informatics and Mathematical Modelling

[Distributed ME] Quorum-Based Algorithms

• Each process requests permission to execute the CS from a subset of
processes (QUORUM).

• The quorums are formed in such a way that when two processes concurrently
request access to the CS

‣ at least one process receives both the requests

‣ this process is responsible to make sure that only one request executes
the CS at any time.

46

DTU Informatics
Department of Informatics and Mathematical Modelling

Quorum-Based Mutual Exclusion Algorithms

• Idea:

‣ processes vote for one another to enter the CS

‣ a process can vote only one process per session

‣ a “candidate” process must collect sufficient votes to enter the CS

- a process does NOT need permission from ALL other processes, but
only from a SUBSET of the processes (QUORUM)

• Intersection property: for every quorum Vi, Vj ⊆ {p1, p2, ..., pN}, Vi ∩ Vj ≠ ∅.

‣ Example: {2, 5, 7} and {5, 7 9} are suitable quorums, {1, 2, 3} and {2, 5, 7}
are not suitable quorums

• Algorithms basically differ in how the quorum is constructed.

47

DTU Informatics
Department of Informatics and Mathematical Modelling

Quorum-Based Mutual Exclusion Algorithms

• A simple protocol works as follows:

‣ let pi be a process in quorum Vi

‣ if pi wants to invoke mutual exclusion, it requests permission from all
processes in its quorum Vi

‣ every process does the same to invoke mutual exclusion

‣ due to the Intersection property, quorum Vi contains at least on process
that is common to the quorum of every other site

‣ these common processes send permission (i.e., vote) to only one process
at any time

‣ Thus, mutual exclusion is guaranteed.

48

DTU Informatics
Department of Informatics and Mathematical Modelling

Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1 ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2 ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3 ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4 any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

49

DTU Informatics
Department of Informatics and Mathematical Modelling

Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1 ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2 ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3 ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4 any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

49

necessary for
correctness

DTU Informatics
Department of Informatics and Mathematical Modelling

Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1 ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2 ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3 ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4 any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

49

necessary for
correctness

desiderable features

DTU Informatics
Department of Informatics and Mathematical Modelling

Maekawa’s Algorithm [1985]

50

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast REQUEST to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a REQUEST from pi at pj

if (state = HELD or voted = TRUE)
then
	 queue request from pi without replying;
else
	 send REPLY to pi;
	 voted := TRUE;
end if

For pi to exit the critical section
state := RELEASED;
Multicast RELEASE to all processes in Vi;

On receipt of a RELEASE from pi at pj

if (queue of requests is non-empty)
then
 remove head of queue – from pk, say;
	 send REPLY to pk;
	 voted := TRUE;
else
	 voted := FALSE;
end if

DTU Informatics
Department of Informatics and Mathematical Modelling

Correctness

• Theorem. Maekawa’s algorithm achieves mutual exclusion.

51

• Proof: homework

DTU Informatics
Department of Informatics and Mathematical Modelling

Performance of Maekawa’s Algorithm

• The size of each quorum is √N.

➡The bandwidth utilization is 3√N messages per CS execution.

‣ 2√N messages per entry to the CS (√N REQUEST and √N REPLY)

‣ √N messages per exit

• The client delay in requesting entry is a round-trip time.

• The synchronization delay is a round-trip time.

52

DTU Informatics
Department of Informatics and Mathematical Modelling

A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p2, p3}.

53

p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following
scenario is possible:

‣ p1 is a candidate in V1, waiting for p2’s REPLY

‣ p2 is a candidate in V2, waiting for p3’s REPLY

‣ p3 is a candidate in V3, waiting for p1’s REPLY

DTU Informatics
Department of Informatics and Mathematical Modelling

A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p2, p3}.

53

p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following
scenario is possible:

‣ p1 is a candidate in V1, waiting for p2’s REPLY

‣ p2 is a candidate in V2, waiting for p3’s REPLY

‣ p3 is a candidate in V3, waiting for p1’s REPLY
DEADLOCK!

DTU Informatics
Department of Informatics and Mathematical Modelling

Deadlock Scenario

54

p1

p2

p3

V1 V2

V3

REQUEST

REPLY

p1

p2

p3

p3

p1

p2

• Each process has received one out of two replies, and none can proceed!

DTU Informatics
Department of Informatics and Mathematical Modelling

Solving the Deadlock Problem

• Intuition: Maekawa’s algorithm can deadlock because a process is exclusively
locked by other processes and requests are not prioritized by their
timestamps.

• The algorithm can be adapted so that it becomes deadlock-free.

• IDEA: in the adapted protocol, processes queue outstanding requests in
happened-before order, so that requirements ME3 is also satisfied.

• See paper:

B. Sanders.
The Information Structure of Distributed Mutual Exclusion Algorithms.
ACM Transactions on Computer Systems, Vol. 5, No. 3, pp. 284-99.

55

DTU Informatics
Department of Informatics and Mathematical Modelling

Fault Tolerance

• What happens when messages are lost?

• What happens when a process crashes?

• None of the algorithms would tolerate the loss of messages, if the channels
were unreliable.

• Ring-based algorithm: cannot tolerate a crash failure of any single process.

• Central server algorithm: can tolerate the crash failure of a client process that
neither holds nor has requested the token.

• Ricart-Agrawala algorithm: can be adapted to tolerate the crash failure of
such a process, by taking it to grant all requests implicitly.

• Maekawa’s algorithm: can tolerate some process crash failures: if a crashed
process is not in a voting set that is required, then its failure will not affect the
other processes.

56

