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AIM: Coordination and/or Agreement

• Collection of algorithms whose goals vary 

but which share an aim that is fundamental in distributed systems

for a set of distributed processes to coordinate their actions or to agree 
on one or more values.
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Failure Assumptions

• Each pair of processes is connected by reliable channels.

‣ A reliable channel eventually delivers a message to the recipient’s input 
buffer.

• No process failure implies a threat to the other processes’ ability to 
communicate.

‣ None of the processes depends upon another to forward messages.

• Unless we state otherwise, processes only fail by crashing.

3
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Distributed Mutual Exclusion



DTU Informatics
Department of Informatics and Mathematical Modelling

Problem: Coordinate Access to Shared Resources

• Distributed processes often need to coordinate their activities.

• If a collection of processes share a resource or collection of resources, then 
often mutual exclusion is required to prevent interference and ensure 
consistency when accessing the resources.

• Critical section problem in the domain of operating systems.

• BUT in a distributed system, neither shared variables nor facilities supplied by 
a single local kernel can be used to solve the problem.

• We require a distributed mutual exclusion: one that is based solely on 
message passing!!!
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Model (Without Failures)

• We consider a system of N processes pi, i =1,...,N that do not share variables.

• The processes access common resources, but they do so in a critical section.

• The system is asynchronous.

• Processes do not fail.

• Message delivery is reliable: any message sent is eventually delivered intact, 
exactly once.

• Client processes are well-behaved and spend a finite time accessing 
resources within their CSs.

6
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Critical Section (CS)

• The application-level protocol for executing a CS is as follows:

‣ enter(): enter a critical section - block if necessary.

‣ resourceAccess(): access shared resources in critical section.

‣ exit(): leave critical section - other processes may now enter.

7
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Requirements for ME

8

• A mutual exclusion algorithm should satisfy the following properties:

‣ [ME1] Safety: at most one process can execute in the CS at a time.

‣ [ME2] Liveness: requests to enter and exit the CS eventually succeed.

‣ [ME3] Ordering: if one request to enter the CS happened-before another, 
then entry to the CS is granted in that order.

• The first property is absolutely necessary (correctness).

• The other two properties are considered important in ME algorithms.
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On ME Requirements: Liveness

9

• [ME2] Liveness: requests to enter and exit the CS eventually succeed.

• Condition ME2 implies freedom from both deadlock and starvation.

‣ A deadlock would involve two or more processes becoming stuck 
indefinitely while attempting to enter or exit the critical section, by virtue of 
their mutual interdependence.

‣ Even without a deadlock, a poor algorithm might lead to starvation: the 
indefinite postponement of entry for a process that has requested it.

• The absence of starvation is a fairness condition.
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On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another, then 
entry to the CS is granted in that order.

• If a solution grants entry to the CS in happened-before order, and if all the 
requests are related by happened-before, then it is not possible for a process 
to enter the CS more than once while another waits to enter.

10
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On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another, then 
entry to the CS is granted in that order.

• If a solution grants entry to the CS in happened-before order, and if all the 
requests are related by happened-before, then it is not possible for a process 
to enter the CS more than once while another waits to enter.
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• Example: a multi-threaded process may continue with other processing while 
a thread waits to be granted entry to a CS.

‣ During this time, it might send a message to another process, which 
consequently also tries to enter the CS.

‣ ME3 specifies that the first process be granted access before the second. 
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Performance Criteria

• Algorithms for ME can be evaluated by several metrics, such as:

‣ The bandwidth consumed, which is proportional to the number of 
messages sent in each entry and exit operation.

‣ The client delay incurred by a process at each entry and exit operation.

‣ The algorithm’s effect upon the throughput of the system: the rate at which 
the collection of processes as a whole can access the CS, given that some 
communication is necessary between successive processes.

- Measured using the synchronization delay (SD) between one process 
exiting the CS and the next process entering it.

- The throughput is greater when the synchronization delay is shorter.

11

throughput = 1 

(SD + E)
where E = average CS execution time
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Design of Distributed ME Algorithms

• Complex because these algorithms have to deal with 

‣ unpredictable message delays

‣ incomplete knowledge of the system state

• Three basic approaches:

‣ Token based approaches

‣ Non-token based approaches

‣ Quorum based approaches

12
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Distributed Mutual Exclusion

Token based approaches
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[Distributed ME] Token Based Algorithms

• A unique token (PRIVILEGE msg) is shared among the processes.

• A process is allowed to enter its CS if it possesses the token. 

• The process continues to hold the token until the execution of the CS is over.

• Mutual exclusion is ensured because the token is unique.

• The algorithms based on this approach essentially differ in the way a process 
carries out the search for the token.

14



DTU Informatics
Department of Informatics and Mathematical Modelling

The Central Server Algorithm

• The simplest way to achieve mutual exclusion is to employ a server that 
grants permission to enter the CS.

15

• To enter a CS, a process sends a requests to the server and awaits a reply from it.

• The reply constitutes a token signifying permission to enter the CS.

• If no other process has the token at the time of the request then the server replies 
immediately, granting the token.

• If the token is currently held by another process, then the server does not reply but queues 
the request.

• On exiting the CS, a message is sent to the server, giving it back the token.

• If the queue of waiting process is not empty, then the server chooses the oldest entry in the 
queue, removes it and replies to the corresponding process.

• The chosen process then holds the token. Algorithm
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[The Central Server Algorithm] Example

• Process p1 does not currently require entry to the CS.

16

• Process p2‘s request has been appended to the queue, which already 
contained p4‘s request.

• Process p3 exits the CS.

• The server removes p4‘s entry and 
grants permission to enter to p4 by 
replying to it.
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Performance of the Central Server Algorithm

• Entering the CS:

‣ It takes 2 messages: a request followed by a grant.

‣ It delays the requesting process (client) by the time for this round-trip.

• Exiting the CS:

‣ It takes 1 release message.

‣ Assuming asynchronous message passing, this does not delay the exiting 
process.

• The server may become a performance bottleneck for the system as a whole.

‣ Synchronization delay: time taken for a round-trip (a release msg to the 
server, followed be a grant msg to the next process to enter the CS).

17
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• Provide a formal specification in CSP of the central server algorithm.

• Given the assumption that no failures occur, informally discuss: 

‣ why the safety and liveness conditions [ME1 and ME2] are met by the 
central server algorithm

‣ the algorithm does not satisfy property ME3

18
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A Ring-Based Algorithm

• Logical ring: one of the simplest ways to arrange a ME between N processes 
without requiring an additional process.

19

Each process pi has a 
communication channel 
to the next process in 
the ring, p(i + 1) mod N.

• The ring topology may be unrelated to the physical interconnections between 
the underlying computers.

• If a process does not require to enter the CS when 
it receives the token, then it immediately forwards 
the token to its neighbour.

• A process that requires the token waits until it 
receives it, but retains it.

• To exit the CS, the process sends the token on to 
its neighbour.

• Basic idea: exclusion is conferred by obtaining a 
token in the form of a message from process to 
process in a single direction around the ring.

Algorithm
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• Given the assumption that no failures occur, informally discuss why the safety 
and liveness conditions [ME1 and 2] are met by the ring-based algorithm.

• Informally discuss why the ring-based algorithm does not necessarily satisfy 
the ordering property [ME3]. 

20
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Performance of the Ring-Based Algorithm

• The algorithm continuously consumes network bandwidth, expect when a 
process is inside the critical section.

‣ The processes send messages around the ring even when no process 
requires entry to the CS.

• The delay experienced by a process requesting entry to the CS is between 0 
messages (when it has just received the token) and N messages (when it has 
just passed on the token).

• To exit the CS requires only one message.

• The synchronization delay between one process’s exit from the CS and the 
next process’s entry is anywhere from 1 to N message transmissions.

21
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• Provide a formal specification in CSP of the ring-based algorithm.

22

Homework
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Distributed Mutual Exclusion

Non-token based approaches
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[Distributed ME] Non-token Based Algorithms

• Two or more successive rounds of messages are exchanged among the 
processes to determine which process will enter the CS next.

• A process enters the CS when an assertion, defined on its local variables, 
becomes true.

• Mutual exclusion is enforced because the assertion becomes true only at one 
site at any given time. 

24
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Lamport’s Algorithm

• Requires communication channels to deliver messages in FIFO order.

• Satisfies conditions ME1, ME2 and ME3.

• Based on Lamport logical clocks: timestamped requests for entering the CS.

• Timestamp: (clock value, id of the process)

• Every process pi keeps a queue, request_queuei, which contains mutual 
exclusion requests ordered by their timestamps.

• The algorithm executes CS requests in the increasing order of timestamps.

• Timestamps are totally ordered!! Example: (1, 1) < (1, 2)

25
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Extension of Happened-Before Relation (→)

• → defines a partial ordering of events in the system.

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’).

CR2: If a is the sending of a message by pi and b is the receipt of the same 
message by pj, then Li(a) < Lj(b).

CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then L
(e) < L(e’’).

• A total ordering ⇒ requires the further rule:

CR4: a (in pi) ⇒ b (in pj) if and only if 

                         either Li(a) < Lj(b) 
                         or Li(a) = Lj(b) ∧ pi ≺ pj 

for some suitable ordering ≺ of the processes.

26
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Lamport’s Algorithm [1978]

27

Requesting the CS
Process pi updates its local clock and timestamps the request (tsi)
Process pi broadcasts a REQUEST(tsi, i) to all the other processes
Process pi places the request on request_queuei

On Receiving REQUEST(tsi, i) from a process pi

Process pj places pi’s request on request_queuej

Process pj returns a timestamped REPLY msg to pi

Executing the CS
Process pi enters the CS when the following two conditions hold:
‣ L1: pi has received a msg with timestamp larger than (tsi, i) from all other processes
‣ L2: pi’s request is at the top of request_queuei

Releasing the CS
Process pi removes its request from the top of request_queuei

Process pi broadcasts a timestamped RELEASE msg to all other processes

On Receiving RELEASE from a process pi

Process pj removes pi’s request from its request queue request_queuej
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The Algorithm in Action: Entering a CS

28

p1

p2

p3

• p1 and p2 send out REQUEST messages for the CS to the other processes

REQUEST(1, 1)

REQUEST(1, 2)

(1, 1)request_queue1

(1, 2)request_queue2
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The Algorithm in Action: Entering a CS

29

• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)
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The Algorithm in Action: Entering a CS
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• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)

p1 enters the CS

‣ L1: p1 has received a msg with timestamp larger 
than (1, 1) from all other processes

‣ L2: p1’s request is at the top of request_queue1
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The Algorithm in Action: Exiting a CS

30

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2 (1, 1)

p1 exits the CS
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The Algorithm in Action: Exiting a CS
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• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

On Receiving RELEASE from process p1

• Process p2 removes p1’s request from its request 
queue request_queue2
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The Algorithm in Action: p2 enters the CS...

32

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

p2 enters the CS

‣ L1: p2 has received a msg with timestamp larger 
than (1, 2) from all other processes

‣ L2: p2’s request is at the top of request_queue2
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Theorem

Lamport’s algorithm achieves mutual exclusion (property ME1).

Proof [by contradiction]:

- suppose two processes pi and pj are executing the CS concurrently

➡L1 and L2 must hold at both sites concurrently

➡at some instant in time, say t, both pi and pj have their own requests at the 
top of their request_queue and condition L1 holds at them

- Without loss of generality, assume that (tsi, i) < (tsj, j)

- From L1 and FIFO property, at instant t the request of pi must be in 
request_queuej when pj was executing its CS

➡pj’s own request is at the top of request_queuej when a smaller timestamp 
request, (tsi, i) from pi, is present in the queue -  a contradiction!!

33
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Performance of Lamport’s Algorithm

• For each CS execution, the algorithm requires

‣ (N - 1) REQUEST messages

‣ (N - 1) REPLY messages

‣ (N - 1) RELEASE messages

• Thus, the algorithm requires 3(N - 1) messages per CS invocation.

• The client delay in requesting entry is a round-trip time. 

• The synchronization delay is 1 msg transmission (average message delay).

34
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Ricart and Agrawala’s Algorithm [1981]

• Basic idea: processes that require entry to a CS multicast a request message, 
and can enter it only when all the other processes have replied to this 
message.

• BUT the algorithm does NOT require communication channels to be FIFO.

• Each process pi keeps a Lamport clock, updated according to LC1 and LC2.

• Messages requesting entry are of the form <T, pi>, where T is the sender’s 
timestamp and pi is the sender’s identifier.

• Every process records its state of being outside the CS (RELEASED), wanting 
entry (WANTED) or being in the CS (HELD) in a variable state.
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Ricart and Agrawala’s Algorithm [1981]

36

On initialization
state := RELEASED; 

To enter the Critical Section
state := WANTED;
Multicast REQUEST to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then 
	 queue request from pi without replying; 
else 
	 reply immediately to pi;
end if

To exit the Critical Section
state := RELEASED;
reply to any queued requests;
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Ricart and Agrawala’s Algorithm [1981]

36

On initialization
state := RELEASED; 

To enter the Critical Section
state := WANTED;
Multicast REQUEST to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then 
	 queue request from pi without replying; 
else 
	 reply immediately to pi;
end if

To exit the Critical Section
state := RELEASED;
reply to any queued requests;

If two or more processes request 
entry at the same time, then 
whichever process’s request 
bears the lowest timestamp will 
be the first to collect N-1 replies, 
granting it entry next.

In case of equal timestamps, the 
requests are ordered according 
to the process identifiers.
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[Ricart and Agrawala’s Algorithm] Example

37

• p3 not interested in entering the CS

• p1 and p2 request it concurrently
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[Ricart and Agrawala’s Algorithm] Example

38

• The timestamp of p1’s request is 41, that of p2 is 34.

• When p3 receives their requests, it replies immediately.
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[Ricart and Agrawala’s Algorithm] Example
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• When p2 receives p1’s request, it finds its own request has the lower 
timestamp (34 < 41), and so does not reply, holding p1 off.
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[Ricart and Agrawala’s Algorithm] Example
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• However, p1 finds that p2’s request has a lower timestamp than that of its own 
request (34 < 41) and so replies immediately.
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[Ricart and Agrawala’s Algorithm] Example
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• On receiving the 2nd reply, p2 can enter the CS.
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[Ricart and Agrawala’s Algorithm] Example

42

• When p2 exits the CS, it will reply to p1’s request and so grant it entry.



DTU Informatics
Department of Informatics and Mathematical Modelling

• Prove that Ricart and Agrawala’s algorithm achieves the safety property ME1.

Idea: if it were possible for two processes pi and pj (i ≠ j) to enter the CS at the 
same time, then both of those processes would have to have replied to the 
other.

But since the pairs <Ti, pi> are totally ordered, this is impossible.

• Verify, in a similar way, that the algorithm also meets requirements ME2 and 
ME3.

43
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Performance of the Ricart-Agrawala’s Algorithm

• Gaining entry takes 2(N-1) messages: 

‣ N-1 to multicast the request

‣ followed by N-1 replies

• The client delay in requesting entry is a round-trip time.

• The synchronization delay is 1 message transmission time.

• Ricart and Agrawala refined the algorithm so that it requires N messages to 
obtain entry in the worst (and common) case.
[Raynal, M. (1988). Distributed Algorithms and Protocols. Wiley]
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Distributed Mutual Exclusion

Quorum-Based Mutual Exclusion Algorithms
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[Distributed ME] Quorum-Based Algorithms

• Each process requests permission to execute the CS from a subset of 
processes (QUORUM).

• The quorums are formed in such a way that when two processes concurrently 
request access to the CS 

‣ at least one process receives both the requests 

‣ this process is responsible to make sure that only one request executes 
the CS at any time.

46
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Quorum-Based Mutual Exclusion Algorithms

• Idea:

‣ processes vote for one another to enter the CS

‣ a process can vote only one process per session

‣ a “candidate” process must collect sufficient votes to enter the CS

- a process does NOT need permission from ALL other processes, but 
only from a SUBSET of the processes (QUORUM)

• Intersection property: for every quorum Vi, Vj ⊆ {p1, p2, ..., pN}, Vi ∩ Vj ≠ ∅.  

‣ Example: {2, 5, 7} and {5, 7 9} are suitable quorums, {1, 2, 3} and {2, 5, 7} 
are not suitable quorums

• Algorithms basically differ in how the quorum is constructed.

47



DTU Informatics
Department of Informatics and Mathematical Modelling

Quorum-Based Mutual Exclusion Algorithms

• A simple protocol works as follows:

‣ let pi be a process in quorum Vi

‣ if pi wants to invoke mutual exclusion, it requests permission from all 
processes in its quorum Vi

‣ every process does the same to invoke mutual exclusion

‣ due to the Intersection property, quorum Vi contains at least on process 
that is common to the quorum of every other site

‣ these common processes send permission (i.e., vote) to only one process 
at any time

‣ Thus, mutual exclusion is guaranteed.

48
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Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1     ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2     ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3     ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4     any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

49
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Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1     ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2     ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3     ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4     any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

49

necessary for
correctness
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Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1     ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2     ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3     ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4     any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N
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necessary for
correctness

desiderable features
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Maekawa’s Algorithm [1985]

50

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast REQUEST to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a REQUEST from pi at pj

if (state = HELD or voted = TRUE)
then 
	 queue request from pi without replying; 
else 
	 send REPLY to pi;
	 voted := TRUE;
end if

For pi to exit the critical section
state := RELEASED;
Multicast RELEASE to all processes in Vi;

On receipt of a RELEASE from pi at pj

if (queue of requests is non-empty)
then 
 remove head of queue – from pk, say; 
	 send REPLY to pk;
	 voted := TRUE;
else 
	 voted := FALSE;
end if
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Correctness

• Theorem. Maekawa’s algorithm achieves mutual exclusion.

51

• Proof: homework
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Performance of Maekawa’s Algorithm

• The size of each quorum is √N.

➡The bandwidth utilization is 3√N messages per CS execution.

‣ 2√N messages per entry to the CS (√N REQUEST and √N REPLY)

‣ √N messages per exit

• The client delay in requesting entry is a round-trip time.

• The synchronization delay is a round-trip time.
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A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p2, p3}.

53

p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following 
scenario is possible:

‣ p1 is a candidate in V1, waiting for p2’s REPLY

‣ p2 is a candidate in V2, waiting for p3’s REPLY

‣ p3 is a candidate in V3, waiting for p1’s REPLY
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A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p2, p3}.
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p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following 
scenario is possible:

‣ p1 is a candidate in V1, waiting for p2’s REPLY

‣ p2 is a candidate in V2, waiting for p3’s REPLY

‣ p3 is a candidate in V3, waiting for p1’s REPLY
DEADLOCK!
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Deadlock Scenario

54

p1

p2

p3

V1 V2

V3

REQUEST

REPLY

p1

p2

p3

p3

p1

p2

• Each process has received one out of two replies, and none can proceed!
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Solving the Deadlock Problem

• Intuition: Maekawa’s algorithm can deadlock because a process is exclusively 
locked by other processes and requests are not prioritized by their 
timestamps.

• The algorithm can be adapted so that it becomes deadlock-free.

• IDEA: in the adapted protocol, processes queue outstanding requests in 
happened-before order, so that requirements ME3 is also satisfied.

• See paper: 

B. Sanders. 
The Information Structure of Distributed Mutual Exclusion Algorithms.
ACM Transactions on Computer Systems, Vol. 5, No. 3, pp. 284-99.

55



DTU Informatics
Department of Informatics and Mathematical Modelling

Fault Tolerance

• What happens when messages are lost? 

• What happens when a process crashes?

• None of the algorithms would tolerate the loss of messages, if the channels 
were unreliable. 

• Ring-based algorithm: cannot tolerate a crash failure of any single process.

• Central server algorithm: can tolerate the crash failure of a client process that 
neither holds nor has requested the token.

• Ricart-Agrawala algorithm: can be adapted to tolerate the crash failure of 
such a process, by taking it to grant all requests implicitly. 

• Maekawa’s algorithm: can tolerate some process crash failures: if a crashed 
process is not in a voting set that is required, then its failure will not affect the 
other processes.
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