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AIM: Coordination and/or Agreement

Collection of algorithms whose goals vary but which share an aim that is 
fundamental in distributed systems:
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for a set of distributed processes  
to coordinate their actions  

and/or  
to agree on one or more values
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Failure Assumptions

• Each pair of processes is connected by reliable channels


‣ A reliable channel eventually delivers a message to the recipient’s input 
buffer


• No process failure implies a threat to the other processes’ ability to 
communicate


‣ None of the processes depends upon another to forward messages

3
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Distributed Mutual Exclusion

Problem and requirements
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Problem: Coordinate Access to Shared Resources

• Distributed processes often need to coordinate their activities


• If a collection of processes share a resource (or collection of resources), then 
mutual exclusion is required to prevent interference and ensure 
consistency when accessing the resources


• Critical Section (CS) problem in the domain of operating systems:


AT ANY MOMENT,  
AT MOST ONE PROCESS CAN STAY IN ITS CS!

5
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Why Is CS More Complex in Distributed Systems?

• In a distributed system, neither 


‣ shared variables (semaphores) nor 


‣ facilities supplied by a single local kernel 


can be used to solve the problem!


• We require a distributed mutual exclusion: one that is based solely on 
message passing, in a context of 


‣ unpredictable message delays  


‣ no complete knowledge of the state of the system

6
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Model (Without Failures)

• We consider a system of N processes pi, i =1,...,N that do not share variables


• The processes access common resources, but they must do so in a critical 
section


• The system is asynchronous


• Processes do not fail


• Message delivery is reliable: any message sent is eventually delivered intact, 
exactly once


• Client processes are well-behaved and spend a finite time accessing 
resources within their CSs

7
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Critical Section (CS)

• The application-level protocol for executing a CS is as follows:


‣ enter(): enter a critical section - block if necessary


‣ resourceAccess(): access shared resources in critical section


‣ exit(): leave critical section - other processes may now enter

8
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Requirements for ME

9

• A mutual exclusion algorithm should satisfy the following properties:


‣ [ME1] Safety: at most one process can execute in the CS at a time


‣ [ME2] Liveness: requests to enter and exit the CS eventually succeed


‣ [ME3] Ordering: if one request to enter the CS happened-before another, 
then entry to the CS is granted in that order


• Safety is absolutely necessary (CORRECTNESS property)


• The other two properties are considered important in ME algorithms
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On ME Requirements: Liveness

10

• [ME2] Liveness: requests to enter and exit the CS eventually succeed


Implies freedom from both deadlock and starvation


‣ Deadlock: involve two or more processes becoming stuck indefinitely 
while attempting to enter or exit the critical section, by virtue of their mutual 
interdependence


‣ Even without a deadlock, a poor algorithm might lead to starvation: the 
indefinite postponement of entry for a process that has requested it


• The absence of starvation is a FAIRNESS condition
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On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another, 
then entry to the CS is granted in that order

11

N.B.:


If a solution grants entry to the CS in happened-before order 
and 


if all the requests are related by happened-before 


then 


it is not possible for a process to enter the CS more than 
once while another waits to enter

Happened-before ordering of CS requests implies liveness



DTU Compute
Department of Applied Mathematics and Computer Science

[Ordering] Example

12

• A multi-threaded process may continue with other processing while a thread 
waits to be granted entry to a CS


‣ During this time, it might send a message to another process, which 
consequently also tries to enter the CS


‣ ME3 specifies that the first process be granted access before the second 

p1

p2

request 

to enter

the CS

request to 

enter the CS

m

p1 must enter  
the CS before p2
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Performance Criteria

• The bandwidth consumed, which is proportional to the number of 
messages sent in each entry and exit operation 

• The client delay incurred by a process at each entry and exit operation 

• Throughput of the system: the rate at which the collection of processes 
as a whole can access the CS, given that some communication is 
necessary between successive processes

13

throughput = 1 
(E + SD)

E = average CS execution time

SD (synchronization delay) = delay between one process exiting the CS and the 
next process entering it
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Design of Distributed ME Algorithms

• Complex because these algorithms have to deal with 


‣ unpredictable message delays


‣ incomplete knowledge of the system state


• 3 basic approaches:


‣ Token based approaches 

‣ Non-token based approaches 

- Quorum based approaches

14
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Distributed Mutual Exclusion

Token based algorithms
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[Distributed ME] Token Based Algorithms

• A unique token (PRIVILEGE msg) is shared among the processes


• A process is allowed to enter its CS if it possesses the token 


• The process continues to hold the token until the execution of the CS is over


• Mutual exclusion is ensured because the TOKEN IS UNIQUE


• The algorithms based on this approach essentially differ in the way a process 
carries out the search for the token

16
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The Central Server Algorithm

• Simplest way to achieve mutual exclusion: a server grants permission to enter 
the CS

17

• To enter a CS, a process sends a requests to the server and awaits a reply from it


• The reply constitutes a token signifying permission to enter the CS


• If no other process has the token at the time of the request then the server replies 
immediately, granting the token


• If the token is currently held by another process, then the server does not reply but queues 
the request


• On exiting the CS, a message is sent to the server, giving it back the token


• If the queue of waiting process is not empty, then the server chooses the oldest entry in the 
queue, removes it and replies to the corresponding process


• The chosen process then holds the token Algorithm
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[The Central Server Algorithm] Example

• Process p1 does not currently require entry to the CS

18

• Process p2‘s request has been appended to the queue, which already 
contained p4‘s request

• Process p3 exits the CS

• The server removes p4‘s entry and 
grants permission to enter to p4 by 
replying to it
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Performance of the Central Server Algorithm

• Entering the CS:


‣ It takes 2 messages: a request followed by a grant


‣ It delays the requesting process (client) by the time for this round-trip


• Exiting the CS:


‣ It takes 1 release message


‣ Assuming asynchronous message passing, this does not delay the exiting 
process


• Synchronization delay: time taken for a round-trip (a release msg to the 
server, followed be a grant msg to the next process to enter the CS) 


• The server may become a performance bottleneck for the system as a whole

19
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• Basic: given the assumption that no failures occur, informally discuss why 


‣ safety and liveness conditions [ME1 and ME2] are met by the Central 
Server algorithm


‣ the algorithm does not satisfy the ordering property [ME3]


- hint: describe a situation in which two requests are not processed in 
happened-before order


• Advanced: prove the above statements

20

Homework
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A Ring-Based Algorithm

• Logical ring: one of the simplest ways to arrange a ME between N processes 
without requiring an additional process

21

Each process pi has a 
communication channel 
to the next process in 
the ring, p(i + 1) mod N

The ring topology may be unrelated to the physical interconnections between 
the underlying computers

• Basic idea: exclusion is conferred by obtaining a 
token in the form of a message from process to 
process in a single direction around the ring

• If a process does not require to enter the CS when 
it receives the token, then it immediately forwards 
the token to its neighbour


• A process that requires the token waits until it 
receives it, but retains it


• To exit the CS, the process sends the token on to 
its neighbour Algorithm
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Performance of the Ring-Based Algorithm

• The algorithm continuously consumes network bandwidth, except when a 
process is inside the critical section


‣ The processes send messages around the ring even when no process 
requires entry to the CS


• The delay experienced by a process requesting entry to the CS is between 0 
messages (when it has just received the token) and N messages (when it has 
just passed on the token)


• To exit the CS requires only one message


• The synchronization delay between one process’s exit from the CS and the 
next process’s entry is anywhere from 1 to N message transmissions

22
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• Basic: given the assumption that no failures occur, informally discuss why 


‣ the safety and liveness conditions [ME1 and 2] are met by the Ring-Based 
algorithm


‣ the algorithm does not necessarily satisfy the ordering property [ME3] 


- hint: give an example execution of the algorithm to show that 
processes are not necessarily granted entry to the critical section in 
happened-before order


• Advanced: prove the above statements

23

Homework
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Distributed Mutual Exclusion

Non-token based algorithms
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[Distributed ME] Non-token Based Algorithms

• Two or more successive rounds of messages are exchanged among the 
processes to determine which process will enter the CS next


• A process enters the CS when an assertion, defined on its local variables, 
becomes true 

• Mutual exclusion is enforced because the assertion becomes true only 
at one site at any given time 

25
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Lamport’s Algorithm

• Requires communication channels to deliver messages in FIFO order


• Satisfies conditions ME1, ME2 and ME3


• Based on Lamport logical clocks: timestamped requests for entering the CS


• Every process pi keeps a queue, request_queuei, which contains mutual 
exclusion requests ordered by their timestamps


• IDEA: the algorithm executes CS requests in the increasing order of 
timestamps


• Timestamp: (clock value, id of the process)

26
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Timestamp: (clock value, id of the process)?

27

Why does the algorithm need 

the id of the sending process 


in the timestamp?
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Extension of Happened-Before Relation (→)

• → defines a partial ordering of events in the system


CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’)


CR2: If a is the sending of a message by pi and b is the receipt of the same 
message by pj, then Li(a) < Lj(b)


CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then 
L(e) < L(e’’)


• A total ordering ⇒ requires the further rule:


CR4: a (in pi) ⇒ b (in pj) if and only if 

                         either Li(a) < Lj(b) 

                         or Li(a) = Lj(b) ∧ pi ≺ pj 


for some suitable ordering ≺ of the processes

28

Timestamps totally 
ordered!! 

Example: (1, 1) < (1, 2)
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Lamport’s Algorithm [1978]

29

Requesting the CS 
Process pi updates its local clock and timestamps the request (tsi)

Process pi broadcasts a REQUEST(tsi, i) to all the other processes

Process pi places the request on request_queuei


On Receiving REQUEST(tsi, i) from a process pi 
Process pj places pi’s request on request_queuej 
Process pj returns a timestamped REPLY msg to pi


Executing the CS

Process pi enters the CS when the following two conditions hold:

‣ L1: pi has received a msg with timestamp larger than (tsi, i) from all other processes

‣ L2: pi’s request is at the top of request_queuei


Releasing the CS

Process pi removes its request from the top of request_queuei

Process pi broadcasts a timestamped RELEASE msg to all other processes


On Receiving RELEASE from a process pi

Process pj removes pi’s request from its request queue request_queuej
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The Algorithm in Action: Entering a CS
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p1

p2

p3

• p1 and p2 send out REQUEST messages for the CS to the other processes

REQUEST(1, 1)

REQUEST(1, 2)

(1, 1)request_queue1

(1, 2)request_queue2
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The Algorithm in Action: Entering a CS
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• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)

p1 enters the CS

‣ L1: p1 has received a msg with timestamp larger 
than (1, 1) from all other processes


‣ L2: p1’s request is at the top of request_queue1
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The Algorithm in Action: Exiting a CS

32

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2 (1, 1)

p1 exits the CS
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The Algorithm in Action: Exiting a CS

33

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

On Receiving RELEASE from process p1

• Process p2 removes p1’s request from its request 

queue request_queue2
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The Algorithm in Action: p2 enters the CS...

34

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

p2 enters the CS

‣ L1: p2 has received a msg with timestamp larger 
than (1, 2) from all other processes


‣ L2: p2’s request is at the top of request_queue2
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Another Example

35
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Correctness Theorem

Lamport’s algorithm achieves mutual exclusion (property ME1) 

Proof [by contradiction]:

- suppose two processes pi and pj are executing the CS concurrently

➡ L1 and L2 must hold at both sites concurrently

➡ at some instant in time, say t, both pi and pj have their own requests at the top 

of their request_queue and condition L1 holds at them 
- Without loss of generality, assume that (tsi, i) < (tsj, j)

- From L1 and FIFO property, at instant t the request of pi must be in 

request_queuej when pj was executing its CS

➡pj’s own request is at the top of request_queuej when a smaller timestamp 

request, (tsi, i) from pi, is present in the queue -  a contradiction!!

36

(tsi, i)(tsj, j) ... ...request_queuej
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Fairness Theorem

Lamport’s algorithm is fair (that is, the requests for CS are executed in the order 
of their timestamps)  

Proof [by contradiction]:

- without loss of generality, suppose a pi’s request has a smaller timestamp than 

the request of another site pj and pj is able to execute the CS before pi

➡ for pj to execute the CS, it has to satisfy L1 and L2, which implies that: 


- at some instant in time, say t, pj has its own request at the top of its queue 

- pj has also received a message with timestamp larger than the timestamp of 

its request from all other processes, including pi

- by assumption, request queue of a process is ordered by timestamps 

- according to our assumption pi has lower timestamp 

➡So pi’s request must be placed ahead of the pj’s request in the request_queuej - 

a contradiction!
37
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Performance of Lamport’s Algorithm

• For each CS execution, the algorithm requires


‣ (N - 1) REQUEST messages


‣ (N - 1) REPLY messages


‣ (N - 1) RELEASE messages


• Thus, the algorithm requires 3(N - 1) messages per CS invocation


• The client delay in requesting entry is a round-trip time 


• The synchronization delay is 1 msg transmission (average message delay)

38
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Homework

• Advanced: why does Lamport's algorithm require communication channels to 
deliver messages in FIFO order?

39
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Ricart and Agrawala’s Idea [1981]

• Basic idea: 


‣ processes that require entry to a CS multicast a request message


‣ processes can enter the CS only when all the other processes have replied 
to this message


‣ node pj does not need to send a REPLY to node pi if pj has a request with 
timestamp lower than the request of pi (since pi cannot enter before pj 
anyway in this case)


• Does NOT require communication channels to be FIFO

40
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Ricart and Agrawala’s Algorithm [1981]

• Each process pi keeps a Lamport clock, updated according to LC1 and LC2


• Messages requesting entry are of the form <T, pi>, where T is the sender’s 
timestamp and pi is the sender’s identifier


• Every process records its state of being outside the CS (RELEASED), wanting 
entry (WANTED) or being in the CS (HELD) in a variable state

41
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Ricart and Agrawala’s Algorithm [1981]

42

On initialization 
state := RELEASED;  

To enter the Critical Section 
state := WANTED;

Multicast REQUEST to all processes;

T := request’s timestamp;

Wait until (number of replies received = (N – 1));

state := HELD;


On receipt of a request <Ti, pi> at pj (i ≠ j) 
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))

then 

	 queue request from pi without replying; 

else 

	 reply immediately to pi;

end if

To exit the Critical Section 
state := RELEASED;

reply to any queued requests;

If two or more processes request 
entry at the same time, then 
whichever process’s request 
bears the lowest timestamp will 
be the first to collect N-1 replies, 
granting it entry next.


In case of equal timestamps, the 
requests are ordered according 
to the process identifiers.
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[Ricart and Agrawala’s Algorithm] Example

43

• p3 not interested in entering the CS

• p1 and p2 request it concurrently
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[Ricart and Agrawala’s Algorithm] Example

44

• The timestamp of p1’s request is 41, that of p2 is 34.

• When p3 receives their requests, it replies immediately
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[Ricart and Agrawala’s Algorithm] Example

45

• When p2 receives p1’s request, it finds its own request has the lower 
timestamp (34 < 41), and so does not reply, holding p1 off
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[Ricart and Agrawala’s Algorithm] Example

46

• However, p1 finds that p2’s request has a lower timestamp than that of its own 
request (34 < 41) and so replies immediately
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[Ricart and Agrawala’s Algorithm] Example

47

• On receiving the 2nd reply, p2 can enter the CS
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[Ricart and Agrawala’s Algorithm] Example

48

• When p2 exits the CS, it will reply to p1’s request and so grant it entry
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Performance of the Ricart-Agrawala’s Algorithm

• Gaining entry takes 2(N-1) messages: 


‣ N-1 to multicast the request


‣ followed by N-1 replies


• The client delay in requesting entry is a round-trip time


• The synchronization delay is 1 message transmission time


• Ricart and Agrawala refined the algorithm so that it requires N messages to 
obtain entry in the worst (and common) case

[Raynal, M. (1988). Distributed Algorithms and Protocols. Wiley]

49
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• Ricart and Agrawala’s Algorithm: prove that the algorithm achieves the safety 
property ME1


‣ hint: proof by contradiction


• Verify, in a similar way, that the algorithm also meets requirements ME2 and 
ME3.

50

Homework
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Distributed Mutual Exclusion

Quorum-Based ME Algorithms



DTU Compute
Department of Applied Mathematics and Computer Science

Quorum-Based Algorithms

• Each process requests permission to execute the CS from a subset of 
processes (QUORUM)


• The quorums are formed in such a way that when two processes concurrently 
request access to the CS 


‣ at least one process receives both the requests 


‣ this process is responsible to make sure that only one request executes 
the CS at any time

52
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Quorum-Based Mutual Exclusion Algorithms

• Idea:


‣ processes vote for one another to enter the CS


‣ a process can vote only one process per session


‣ a “candidate” process must collect sufficient votes to enter the CS


- a process does NOT need permission from ALL other processes, but 
only from a SUBSET of the processes (QUORUM)


• Intersection property: for every quorum Vi, Vj ⊆ {p1, p2, ..., pN}, Vi ∩ Vj ≠ ∅  


‣ Example: {2, 5, 7} and {5, 7, 9} are suitable quorums, {1, 2, 3} and {5, 7, 9} 
are not suitable quorums


• Algorithms basically differ in how the quorum is constructed

53
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Simple Quorum-Based ME Algorithm

• A simple protocol works as follows:


‣ let pi be a process in quorum Vi


‣ if pi wants to invoke mutual exclusion, it requests permission from all 
processes in its quorum Vi

(every process does the same to invoke mutual exclusion)


‣ due to the Intersection property, quorum Vi contains at least one process 
that is common to any other quorums


‣ these common processes send permission (i.e., vote) to only one process 
at any time


‣ Thus, mutual exclusion is guaranteed

54
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Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:


M1     ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅


M2     ∀i : 1 ≤ i ≤ N, then pi ∈ Vi


M3     ∀i : 1 ≤ i ≤ N, then |Vi| = K


M4     any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N


• Optimal solution: N = K(K - 1) + 1, which gives K = √N

55

necessary for 
correctness

desiderable features
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Maekawa’s Algorithm [1985]

56

On initialization 
state := RELEASED;

voted := FALSE;


For pi to enter the critical section 
state := WANTED;

Multicast REQUEST to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;


On receipt of a REQUEST from pi at pj 
if (state = HELD or voted = TRUE)

then 

	 queue request from pi without replying; 

else 

	 send REPLY to pi;

	 voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast RELEASE to all processes in Vi;


On receipt of a RELEASE from pi at pj 
if (queue of requests is non-empty)

then 

	 remove head of queue – from pk, say; 

	 send REPLY to pk;

	 voted := TRUE;

else 

	 voted := FALSE;

end if
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Correctness Theorem

• Maekawa’s algorithm achieves mutual exclusion.

57

• Proof: homework
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Performance of Maekawa’s Algorithm

• The size of each quorum is √N


➡The bandwidth utilization is 3√N messages per CS execution


‣ 2√N messages per entry to the CS (√N REQUEST and √N REPLY)


‣ √N messages per exit


• The client delay in requesting entry is a round-trip time


• The synchronization delay is a round-trip time

58
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A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p1, p3}

59

p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following 
scenario is possible:


‣ p1 is a candidate in V1, waiting for p2’s REPLY


‣ p2 is a candidate in V2, waiting for p3’s REPLY


‣ p3 is a candidate in V3, waiting for p1’s REPLY
DEADLOCK!
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Deadlock Scenario

60

p1

p2

p3

V1 V2

V3

REQUEST
REPLY

p1

p2

p3

p3

p1

p2

• Each process has received one out of two replies, and none can proceed!
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Solving the Deadlock Problem

• Intuition: Maekawa’s algorithm can deadlock because a process is exclusively 
locked by other processes and requests are not prioritised by their 
timestamps


• The algorithm can be adapted so that it becomes deadlock-free


• IDEA: in the adapted protocol, processes queue outstanding requests in 
happened-before order, so that requirements ME3 is also satisfied


• See paper: 


B. Sanders. 

The Information Structure of Distributed Mutual Exclusion Algorithms

ACM Transactions on Computer Systems, Vol. 5, No. 3, pp. 284-99, 1987.

61



DTU Compute
Department of Applied Mathematics and Computer Science

Fault Tolerance

• What happens when messages are lost? 


• What happens when a process crashes?

➡ None of the algorithms would tolerate the loss of messages, if the channels 

were unreliable 


• Ring-based algorithm: cannot tolerate a crash failure of any single process


• Central server algorithm: can tolerate the crash failure of a client process that 
neither holds nor has requested the token


• Ricart-Agrawala algorithm: can be adapted to tolerate the crash failure of 
such a process, by taking it to grant all requests implicitly 


• Maekawa’s algorithm: can tolerate some process crash failures: if a crashed 
process is not in a voting set that is required, then its failure will not affect the 
other processes

62


