
DTU Compute
Department of Applied Mathematics and Computer Science

Coordination and Agreement
Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

1. Introduction

2. Distributed Mutual Exclusion

3. Elections

4. Multicast Communication

5. Consensus and related problems

DTU Compute
Department of Applied Mathematics and Computer Science

AIM: Coordination and/or Agreement

Collection of algorithms whose goals vary but which share an aim that is
fundamental in distributed systems:

2

for a set of distributed processes
to coordinate their actions

and/or
to agree on one or more values

DTU Compute
Department of Applied Mathematics and Computer Science

Failure Assumptions

• Each pair of processes is connected by reliable channels

‣ A reliable channel eventually delivers a message to the recipient’s input
buffer

• No process failure implies a threat to the other processes’ ability to
communicate

‣ None of the processes depends upon another to forward messages

3

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Mutual Exclusion

Problem and requirements

DTU Compute
Department of Applied Mathematics and Computer Science

Problem: Coordinate Access to Shared Resources

• Distributed processes often need to coordinate their activities

• If a collection of processes share a resource (or collection of resources), then
mutual exclusion is required to prevent interference and ensure
consistency when accessing the resources

• Critical Section (CS) problem in the domain of operating systems:

AT ANY MOMENT,
AT MOST ONE PROCESS CAN STAY IN ITS CS!

5

DTU Compute
Department of Applied Mathematics and Computer Science

Why Is CS More Complex in Distributed Systems?

• In a distributed system, neither

‣ shared variables (semaphores) nor

‣ facilities supplied by a single local kernel

can be used to solve the problem!

• We require a distributed mutual exclusion: one that is based solely on
message passing, in a context of

‣ unpredictable message delays

‣ no complete knowledge of the state of the system

6

DTU Compute
Department of Applied Mathematics and Computer Science

Model (Without Failures)

• We consider a system of N processes pi, i =1,...,N that do not share variables

• The processes access common resources, but they must do so in a critical
section

• The system is asynchronous

• Processes do not fail

• Message delivery is reliable: any message sent is eventually delivered intact,
exactly once

• Client processes are well-behaved and spend a finite time accessing
resources within their CSs

7

DTU Compute
Department of Applied Mathematics and Computer Science

Critical Section (CS)

• The application-level protocol for executing a CS is as follows:

‣ enter(): enter a critical section - block if necessary

‣ resourceAccess(): access shared resources in critical section

‣ exit(): leave critical section - other processes may now enter

8

DTU Compute
Department of Applied Mathematics and Computer Science

Requirements for ME

9

• A mutual exclusion algorithm should satisfy the following properties:

‣ [ME1] Safety: at most one process can execute in the CS at a time

‣ [ME2] Liveness: requests to enter and exit the CS eventually succeed

‣ [ME3] Ordering: if one request to enter the CS happened-before another,
then entry to the CS is granted in that order

• Safety is absolutely necessary (CORRECTNESS property)

• The other two properties are considered important in ME algorithms

DTU Compute
Department of Applied Mathematics and Computer Science

On ME Requirements: Liveness

10

• [ME2] Liveness: requests to enter and exit the CS eventually succeed

Implies freedom from both deadlock and starvation

‣ Deadlock: involve two or more processes becoming stuck indefinitely
while attempting to enter or exit the critical section, by virtue of their mutual
interdependence

‣ Even without a deadlock, a poor algorithm might lead to starvation: the
indefinite postponement of entry for a process that has requested it

• The absence of starvation is a FAIRNESS condition

DTU Compute
Department of Applied Mathematics and Computer Science

On ME Requirements: Ordering

• [ME3] Ordering: if one request to enter the CS happened-before another,
then entry to the CS is granted in that order

11

N.B.:

If a solution grants entry to the CS in happened-before order
and

if all the requests are related by happened-before

then

it is not possible for a process to enter the CS more than
once while another waits to enter

Happened-before ordering of CS requests implies liveness

DTU Compute
Department of Applied Mathematics and Computer Science

[Ordering] Example

12

• A multi-threaded process may continue with other processing while a thread
waits to be granted entry to a CS

‣ During this time, it might send a message to another process, which
consequently also tries to enter the CS

‣ ME3 specifies that the first process be granted access before the second

p1

p2

request

to enter

the CS

request to

enter the CS

m

p1 must enter
the CS before p2

DTU Compute
Department of Applied Mathematics and Computer Science

Performance Criteria

• The bandwidth consumed, which is proportional to the number of
messages sent in each entry and exit operation

• The client delay incurred by a process at each entry and exit operation

• Throughput of the system: the rate at which the collection of processes
as a whole can access the CS, given that some communication is
necessary between successive processes

13

throughput = 1
(E + SD)

E = average CS execution time

SD (synchronization delay) = delay between one process exiting the CS and the
next process entering it

DTU Compute
Department of Applied Mathematics and Computer Science

Design of Distributed ME Algorithms

• Complex because these algorithms have to deal with

‣ unpredictable message delays

‣ incomplete knowledge of the system state

• 3 basic approaches:

‣ Token based approaches

‣ Non-token based approaches

- Quorum based approaches

14

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Mutual Exclusion

Token based algorithms

DTU Compute
Department of Applied Mathematics and Computer Science

[Distributed ME] Token Based Algorithms

• A unique token (PRIVILEGE msg) is shared among the processes

• A process is allowed to enter its CS if it possesses the token

• The process continues to hold the token until the execution of the CS is over

• Mutual exclusion is ensured because the TOKEN IS UNIQUE

• The algorithms based on this approach essentially differ in the way a process
carries out the search for the token

16

DTU Compute
Department of Applied Mathematics and Computer Science

The Central Server Algorithm

• Simplest way to achieve mutual exclusion: a server grants permission to enter
the CS

17

• To enter a CS, a process sends a requests to the server and awaits a reply from it

• The reply constitutes a token signifying permission to enter the CS

• If no other process has the token at the time of the request then the server replies
immediately, granting the token

• If the token is currently held by another process, then the server does not reply but queues
the request

• On exiting the CS, a message is sent to the server, giving it back the token

• If the queue of waiting process is not empty, then the server chooses the oldest entry in the
queue, removes it and replies to the corresponding process

• The chosen process then holds the token Algorithm

DTU Compute
Department of Applied Mathematics and Computer Science

[The Central Server Algorithm] Example

• Process p1 does not currently require entry to the CS

18

• Process p2‘s request has been appended to the queue, which already
contained p4‘s request

• Process p3 exits the CS

• The server removes p4‘s entry and
grants permission to enter to p4 by
replying to it

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of the Central Server Algorithm

• Entering the CS:

‣ It takes 2 messages: a request followed by a grant

‣ It delays the requesting process (client) by the time for this round-trip

• Exiting the CS:

‣ It takes 1 release message

‣ Assuming asynchronous message passing, this does not delay the exiting
process

• Synchronization delay: time taken for a round-trip (a release msg to the
server, followed be a grant msg to the next process to enter the CS)

• The server may become a performance bottleneck for the system as a whole

19

DTU Compute
Department of Applied Mathematics and Computer Science

• Basic: given the assumption that no failures occur, informally discuss why

‣ safety and liveness conditions [ME1 and ME2] are met by the Central
Server algorithm

‣ the algorithm does not satisfy the ordering property [ME3]

- hint: describe a situation in which two requests are not processed in
happened-before order

• Advanced: prove the above statements

20

Homework

DTU Compute
Department of Applied Mathematics and Computer Science

A Ring-Based Algorithm

• Logical ring: one of the simplest ways to arrange a ME between N processes
without requiring an additional process

21

Each process pi has a
communication channel
to the next process in
the ring, p(i + 1) mod N

The ring topology may be unrelated to the physical interconnections between
the underlying computers

• Basic idea: exclusion is conferred by obtaining a
token in the form of a message from process to
process in a single direction around the ring

• If a process does not require to enter the CS when
it receives the token, then it immediately forwards
the token to its neighbour

• A process that requires the token waits until it
receives it, but retains it

• To exit the CS, the process sends the token on to
its neighbour Algorithm

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of the Ring-Based Algorithm

• The algorithm continuously consumes network bandwidth, except when a
process is inside the critical section

‣ The processes send messages around the ring even when no process
requires entry to the CS

• The delay experienced by a process requesting entry to the CS is between 0
messages (when it has just received the token) and N messages (when it has
just passed on the token)

• To exit the CS requires only one message

• The synchronization delay between one process’s exit from the CS and the
next process’s entry is anywhere from 1 to N message transmissions

22

DTU Compute
Department of Applied Mathematics and Computer Science

• Basic: given the assumption that no failures occur, informally discuss why

‣ the safety and liveness conditions [ME1 and 2] are met by the Ring-Based
algorithm

‣ the algorithm does not necessarily satisfy the ordering property [ME3]

- hint: give an example execution of the algorithm to show that
processes are not necessarily granted entry to the critical section in
happened-before order

• Advanced: prove the above statements

23

Homework

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Mutual Exclusion

Non-token based algorithms

DTU Compute
Department of Applied Mathematics and Computer Science

[Distributed ME] Non-token Based Algorithms

• Two or more successive rounds of messages are exchanged among the
processes to determine which process will enter the CS next

• A process enters the CS when an assertion, defined on its local variables,
becomes true

• Mutual exclusion is enforced because the assertion becomes true only
at one site at any given time

25

DTU Compute
Department of Applied Mathematics and Computer Science

Lamport’s Algorithm

• Requires communication channels to deliver messages in FIFO order

• Satisfies conditions ME1, ME2 and ME3

• Based on Lamport logical clocks: timestamped requests for entering the CS

• Every process pi keeps a queue, request_queuei, which contains mutual
exclusion requests ordered by their timestamps

• IDEA: the algorithm executes CS requests in the increasing order of
timestamps

• Timestamp: (clock value, id of the process)

26

DTU Compute
Department of Applied Mathematics and Computer Science

Timestamp: (clock value, id of the process)?

27

Why does the algorithm need

the id of the sending process

in the timestamp?

DTU Compute
Department of Applied Mathematics and Computer Science

Extension of Happened-Before Relation (→)

• → defines a partial ordering of events in the system

CR1: If ∃ process pi such that e ➝i e’, then Li(e) < Li(e’)

CR2: If a is the sending of a message by pi and b is the receipt of the same
message by pj, then Li(a) < Lj(b)

CR3: If e, e’, e’’ are three events such that L(e) < L(e’) and L(e’) < L(e’’) then
L(e) < L(e’’)

• A total ordering ⇒ requires the further rule:

CR4: a (in pi) ⇒ b (in pj) if and only if

 either Li(a) < Lj(b)

 or Li(a) = Lj(b) ∧ pi ≺ pj

for some suitable ordering ≺ of the processes

28

Timestamps totally
ordered!!

Example: (1, 1) < (1, 2)

DTU Compute
Department of Applied Mathematics and Computer Science

Lamport’s Algorithm [1978]

29

Requesting the CS
Process pi updates its local clock and timestamps the request (tsi)

Process pi broadcasts a REQUEST(tsi, i) to all the other processes

Process pi places the request on request_queuei

On Receiving REQUEST(tsi, i) from a process pi
Process pj places pi’s request on request_queuej
Process pj returns a timestamped REPLY msg to pi

Executing the CS

Process pi enters the CS when the following two conditions hold:

‣ L1: pi has received a msg with timestamp larger than (tsi, i) from all other processes

‣ L2: pi’s request is at the top of request_queuei

Releasing the CS

Process pi removes its request from the top of request_queuei

Process pi broadcasts a timestamped RELEASE msg to all other processes

On Receiving RELEASE from a process pi

Process pj removes pi’s request from its request queue request_queuej

DTU Compute
Department of Applied Mathematics and Computer Science

The Algorithm in Action: Entering a CS

30

p1

p2

p3

• p1 and p2 send out REQUEST messages for the CS to the other processes

REQUEST(1, 1)

REQUEST(1, 2)

(1, 1)request_queue1

(1, 2)request_queue2

DTU Compute
Department of Applied Mathematics and Computer Science

The Algorithm in Action: Entering a CS

31

• Both p1 and p2 have received timestamped REPLY msgs from all processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

(1, 1)

(1, 1)

p1 enters the CS

‣ L1: p1 has received a msg with timestamp larger
than (1, 1) from all other processes

‣ L2: p1’s request is at the top of request_queue1

DTU Compute
Department of Applied Mathematics and Computer Science

The Algorithm in Action: Exiting a CS

32

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2 (1, 1)

p1 exits the CS

DTU Compute
Department of Applied Mathematics and Computer Science

The Algorithm in Action: Exiting a CS

33

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

On Receiving RELEASE from process p1

• Process p2 removes p1’s request from its request

queue request_queue2

DTU Compute
Department of Applied Mathematics and Computer Science

The Algorithm in Action: p2 enters the CS...

34

• p1 exits and sends RELEASE msgs to all other processes

p1

p2

p3

(1, 2)request_queue1

(1, 2)request_queue2

p2 enters the CS

‣ L1: p2 has received a msg with timestamp larger
than (1, 2) from all other processes

‣ L2: p2’s request is at the top of request_queue2

DTU Compute
Department of Applied Mathematics and Computer Science

Another Example

35

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness Theorem

Lamport’s algorithm achieves mutual exclusion (property ME1)

Proof [by contradiction]:

- suppose two processes pi and pj are executing the CS concurrently

➡ L1 and L2 must hold at both sites concurrently

➡ at some instant in time, say t, both pi and pj have their own requests at the top

of their request_queue and condition L1 holds at them
- Without loss of generality, assume that (tsi, i) < (tsj, j)

- From L1 and FIFO property, at instant t the request of pi must be in

request_queuej when pj was executing its CS

➡pj’s own request is at the top of request_queuej when a smaller timestamp

request, (tsi, i) from pi, is present in the queue - a contradiction!!

36

(tsi, i)(tsj, j)request_queuej

DTU Compute
Department of Applied Mathematics and Computer Science

Fairness Theorem

Lamport’s algorithm is fair (that is, the requests for CS are executed in the order
of their timestamps)

Proof [by contradiction]:

- without loss of generality, suppose a pi’s request has a smaller timestamp than

the request of another site pj and pj is able to execute the CS before pi

➡ for pj to execute the CS, it has to satisfy L1 and L2, which implies that:

- at some instant in time, say t, pj has its own request at the top of its queue

- pj has also received a message with timestamp larger than the timestamp of

its request from all other processes, including pi

- by assumption, request queue of a process is ordered by timestamps

- according to our assumption pi has lower timestamp

➡So pi’s request must be placed ahead of the pj’s request in the request_queuej -

a contradiction!
37

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of Lamport’s Algorithm

• For each CS execution, the algorithm requires

‣ (N - 1) REQUEST messages

‣ (N - 1) REPLY messages

‣ (N - 1) RELEASE messages

• Thus, the algorithm requires 3(N - 1) messages per CS invocation

• The client delay in requesting entry is a round-trip time

• The synchronization delay is 1 msg transmission (average message delay)

38

DTU Compute
Department of Applied Mathematics and Computer Science

Homework

• Advanced: why does Lamport's algorithm require communication channels to
deliver messages in FIFO order?

39

DTU Compute
Department of Applied Mathematics and Computer Science

Ricart and Agrawala’s Idea [1981]

• Basic idea:

‣ processes that require entry to a CS multicast a request message

‣ processes can enter the CS only when all the other processes have replied
to this message

‣ node pj does not need to send a REPLY to node pi if pj has a request with
timestamp lower than the request of pi (since pi cannot enter before pj
anyway in this case)

• Does NOT require communication channels to be FIFO

40

DTU Compute
Department of Applied Mathematics and Computer Science

Ricart and Agrawala’s Algorithm [1981]

• Each process pi keeps a Lamport clock, updated according to LC1 and LC2

• Messages requesting entry are of the form <T, pi>, where T is the sender’s
timestamp and pi is the sender’s identifier

• Every process records its state of being outside the CS (RELEASED), wanting
entry (WANTED) or being in the CS (HELD) in a variable state

41

DTU Compute
Department of Applied Mathematics and Computer Science

Ricart and Agrawala’s Algorithm [1981]

42

On initialization
state := RELEASED;

To enter the Critical Section
state := WANTED;

Multicast REQUEST to all processes;

T := request’s timestamp;

Wait until (number of replies received = (N – 1));

state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))

then

	 queue request from pi without replying;

else

	 reply immediately to pi;

end if

To exit the Critical Section
state := RELEASED;

reply to any queued requests;

If two or more processes request
entry at the same time, then
whichever process’s request
bears the lowest timestamp will
be the first to collect N-1 replies,
granting it entry next.

In case of equal timestamps, the
requests are ordered according
to the process identifiers.

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

43

• p3 not interested in entering the CS

• p1 and p2 request it concurrently

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

44

• The timestamp of p1’s request is 41, that of p2 is 34.

• When p3 receives their requests, it replies immediately

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

45

• When p2 receives p1’s request, it finds its own request has the lower
timestamp (34 < 41), and so does not reply, holding p1 off

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

46

• However, p1 finds that p2’s request has a lower timestamp than that of its own
request (34 < 41) and so replies immediately

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

47

• On receiving the 2nd reply, p2 can enter the CS

DTU Compute
Department of Applied Mathematics and Computer Science

[Ricart and Agrawala’s Algorithm] Example

48

• When p2 exits the CS, it will reply to p1’s request and so grant it entry

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of the Ricart-Agrawala’s Algorithm

• Gaining entry takes 2(N-1) messages:

‣ N-1 to multicast the request

‣ followed by N-1 replies

• The client delay in requesting entry is a round-trip time

• The synchronization delay is 1 message transmission time

• Ricart and Agrawala refined the algorithm so that it requires N messages to
obtain entry in the worst (and common) case

[Raynal, M. (1988). Distributed Algorithms and Protocols. Wiley]

49

DTU Compute
Department of Applied Mathematics and Computer Science

• Ricart and Agrawala’s Algorithm: prove that the algorithm achieves the safety
property ME1

‣ hint: proof by contradiction

• Verify, in a similar way, that the algorithm also meets requirements ME2 and
ME3.

50

Homework

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Mutual Exclusion

Quorum-Based ME Algorithms

DTU Compute
Department of Applied Mathematics and Computer Science

Quorum-Based Algorithms

• Each process requests permission to execute the CS from a subset of
processes (QUORUM)

• The quorums are formed in such a way that when two processes concurrently
request access to the CS

‣ at least one process receives both the requests

‣ this process is responsible to make sure that only one request executes
the CS at any time

52

DTU Compute
Department of Applied Mathematics and Computer Science

Quorum-Based Mutual Exclusion Algorithms

• Idea:

‣ processes vote for one another to enter the CS

‣ a process can vote only one process per session

‣ a “candidate” process must collect sufficient votes to enter the CS

- a process does NOT need permission from ALL other processes, but
only from a SUBSET of the processes (QUORUM)

• Intersection property: for every quorum Vi, Vj ⊆ {p1, p2, ..., pN}, Vi ∩ Vj ≠ ∅

‣ Example: {2, 5, 7} and {5, 7, 9} are suitable quorums, {1, 2, 3} and {5, 7, 9}
are not suitable quorums

• Algorithms basically differ in how the quorum is constructed

53

DTU Compute
Department of Applied Mathematics and Computer Science

Simple Quorum-Based ME Algorithm

• A simple protocol works as follows:

‣ let pi be a process in quorum Vi

‣ if pi wants to invoke mutual exclusion, it requests permission from all
processes in its quorum Vi

(every process does the same to invoke mutual exclusion)

‣ due to the Intersection property, quorum Vi contains at least one process
that is common to any other quorums

‣ these common processes send permission (i.e., vote) to only one process
at any time

‣ Thus, mutual exclusion is guaranteed

54

DTU Compute
Department of Applied Mathematics and Computer Science

Maekawa’s Algorithm: Quorums

• The quorums are constructed to satisfy the following conditions:

M1 ∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N, then Vi ∩ Vj ≠ ∅

M2 ∀i : 1 ≤ i ≤ N, then pi ∈ Vi

M3 ∀i : 1 ≤ i ≤ N, then |Vi| = K

M4 any process pj is contained in K number of Vis, 1 ≤ i, j ≤ N

• Optimal solution: N = K(K - 1) + 1, which gives K = √N

55

necessary for
correctness

desiderable features

DTU Compute
Department of Applied Mathematics and Computer Science

Maekawa’s Algorithm [1985]

56

On initialization
state := RELEASED;

voted := FALSE;

For pi to enter the critical section
state := WANTED;

Multicast REQUEST to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;

On receipt of a REQUEST from pi at pj
if (state = HELD or voted = TRUE)

then

	 queue request from pi without replying;

else

	 send REPLY to pi;

	 voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast RELEASE to all processes in Vi;

On receipt of a RELEASE from pi at pj
if (queue of requests is non-empty)

then

	 remove head of queue – from pk, say;

	 send REPLY to pk;

	 voted := TRUE;

else

	 voted := FALSE;

end if

DTU Compute
Department of Applied Mathematics and Computer Science

Correctness Theorem

• Maekawa’s algorithm achieves mutual exclusion.

57

• Proof: homework

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of Maekawa’s Algorithm

• The size of each quorum is √N

➡The bandwidth utilization is 3√N messages per CS execution

‣ 2√N messages per entry to the CS (√N REQUEST and √N REPLY)

‣ √N messages per exit

• The client delay in requesting entry is a round-trip time

• The synchronization delay is a round-trip time

58

DTU Compute
Department of Applied Mathematics and Computer Science

A Problematic Scenario

• Consider processes p1, p2 and p3 with V1 = {p1, p2}, V2 = {p2, p3}, V3 = {p1, p3}

59

p1

p2

p3

V1 V2

V3

• If the processes simultaneously request entry to the CS, then the following
scenario is possible:

‣ p1 is a candidate in V1, waiting for p2’s REPLY

‣ p2 is a candidate in V2, waiting for p3’s REPLY

‣ p3 is a candidate in V3, waiting for p1’s REPLY
DEADLOCK!

DTU Compute
Department of Applied Mathematics and Computer Science

Deadlock Scenario

60

p1

p2

p3

V1 V2

V3

REQUEST
REPLY

p1

p2

p3

p3

p1

p2

• Each process has received one out of two replies, and none can proceed!

DTU Compute
Department of Applied Mathematics and Computer Science

Solving the Deadlock Problem

• Intuition: Maekawa’s algorithm can deadlock because a process is exclusively
locked by other processes and requests are not prioritised by their
timestamps

• The algorithm can be adapted so that it becomes deadlock-free

• IDEA: in the adapted protocol, processes queue outstanding requests in
happened-before order, so that requirements ME3 is also satisfied

• See paper:

B. Sanders.

The Information Structure of Distributed Mutual Exclusion Algorithms

ACM Transactions on Computer Systems, Vol. 5, No. 3, pp. 284-99, 1987.

61

DTU Compute
Department of Applied Mathematics and Computer Science

Fault Tolerance

• What happens when messages are lost?

• What happens when a process crashes?

➡ None of the algorithms would tolerate the loss of messages, if the channels

were unreliable

• Ring-based algorithm: cannot tolerate a crash failure of any single process

• Central server algorithm: can tolerate the crash failure of a client process that
neither holds nor has requested the token

• Ricart-Agrawala algorithm: can be adapted to tolerate the crash failure of
such a process, by taking it to grant all requests implicitly

• Maekawa’s algorithm: can tolerate some process crash failures: if a crashed
process is not in a voting set that is required, then its failure will not affect the
other processes

62

