Exercise 1

- Suppose Chandy and Lamport's distributed snapshot algorithm is initiated by process p_{1} just after event e_{1} in the following computation.

- Sketch how markers would be exchanged during the execution of the algorithm in this case.
- Which events are included in the set H ?
- Which state components are noted down in the various processes, as the execution of the algorithm proceeds?
- Which global state S^{*} is discovered by the algorithm in this case?

Exercise 2

- Two processes p and q are connected in a ring using two channels, and they constantly rotate a message m.
- At any one time, there is only one copy of m in the system.
- Each process's state consists of the number of times it has received m.
- p sends m first.
- At a certain point, p has the message and its state is 101 .
- Immediately after sending m, p initiates the snapshot algorithm.

Explain the operation of the algorithm in this case, giving the possible global state(s) reported by it.

Exercise 3

- A run of a distributed computation is a total ordering \mathbf{R} of its events that corresponds to an actual execution
- An observation is a total ordering Ω of events constructed from within the system
- A single run may have many observations
- An observation can correspond to:
- A consistent run
- A run which is not consistent
- No run at all

Homework: can you find example of the three cases? Can you explain why this happens?

Exercise 4

- We use the passive approach in which processes send notifications of events relevant to Φ to the monitor p_{0}
- Events are tagged with vector clocks
- The monitor collects all the events and builds the lattice of global states
- HOMEWORK: HOW?

Exercise 5

- Given the following computation, construct the lattice of global states.

- Check if Definitely $(a+b=10)$ and Possibly $(a+b=5)$ are true or false
- In case of true, indicate all the global states in which the property holds

Exercise 6

- From exam in 2014:

State whether each of the following is True or False (the symbol " \neg " is the well known negation operator, also called logical complement). In case of False, justify your answers (for instance, by means of a counterexample).
a) Possibly $(\phi) \Longrightarrow \neg \operatorname{Definitely}(\phi)$
b) Possibly $(\phi) \Longrightarrow \operatorname{Definitely}(\phi)$
c) $\operatorname{Possibly}(\phi) \Longrightarrow$ Definitely $(\neg \phi)$
d) $\operatorname{Possibly}(\phi) \Longrightarrow \neg \operatorname{Definitely}(\neg \phi)$
e) Definitely $(\phi) \Longrightarrow \operatorname{Possibly}(\phi)$
f) Definitely $(\phi) \Longrightarrow \operatorname{Possibly}(\neg \phi)$
g) Definitely $(\phi) \Longrightarrow \neg \operatorname{Possibly}(\phi)$
h) Definitely $(\phi) \Longrightarrow \neg \operatorname{Possibly}(\neg \phi)$

