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Outline

• Global State - what is a global state of a distributed system?


‣ definition


‣ next global state


• Distributed Snapshot - how to record a global state of a distributed system? 

‣ consistent global states


‣ Chandy and Lamport’s algorithm


• Evaluating Predicates - why/how to use the recorded global states?  

‣ evaluating Stable Predicates


‣ evaluating Non Stable Predicates
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Problem: Finding the Global State

• Problem: to find the global state of a distributed system (in which data items 
can move from one part of the system to another)


• Why? There are innumerable uses for this, for instance:


‣ finding the total number of files in a distributed file system, where files may 
be moved from one file server to another


‣ finding the total space occupied by files in such a distributed file system


‣ in general, to detect global properties of the distributed system, such as 
garbage collection, deadlock, termination

3

• Solution: distributed snapshot algorithm 

               (Chandy and Lamport, 1985)
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Global State

• Idea: global states are described by 


1) the states of the participating PROCESSES, together with 


2) the states of the CHANNELS through which data (i.e., the files) pass when 
being transferred between these processes
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N.B.: ∑Money = £235
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Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:


1.p’s state in S is just exactly s


2. If c is directed towards p, then c’s state in S must be a sequence of 
messages with M at its head

5

• Each event is described by 5 components: e = <p, s, s’, M, c> 

‣ Process p goes from state s to state s’ 

‣ Message M is sent or received on channel c

• A possible computation of the system is a sequence of possible events, 
starting from the initial global state of the system
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Next Global State

• If e = <p, s, s’, M, c> takes place in global state S, then the following global 
state is next(S, e), where:


1.p’s state in next(S, e) is s’


2. If c is directed towards p, then c’s state in next(S, e) is c’s state in S, with 
M removed from the head of the message sequence


3. If c is directed away from p, then c’s state in next(S, e) is c’s state in S, 
with M added to the tail of the message sequence
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Example: A Possible Computation

• cij denotes the channel which can carry messages from pi to pj


• System configuration:
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Outline

• Global State - what is a global state of a distributed system?


‣ definition


‣ next global state


• Distributed Snapshot - how to record a global state of a distributed system? 

‣ consistent global states


‣ Chandy and Lamport’s algorithm


• Evaluating Predicates - why/how to use the recorded global states?  

‣ evaluating Stable Predicates


‣ evaluating Non Stable Predicates
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[Distributed Snapshots] The Question

Can we now find rules for 

when to take snapshots of 


the individual processes and channels 

so as to build up a consistent picture of 


the global state S?

9
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Assumptions

• The algorithm relies on two main assumptions:


‣ Channels are ERROR-FREE and SEQUENCE PRESERVING (FIFO)


‣ Channels deliver transmitted msgs after UNKNOWN BUT FINITE DELAY


• Other assumptions:


‣ The only events in the system which can give rise to changes in the state 
are communicating events

10
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[Distributed Snapshots] Consistent Picture

• Let us consider the happened-before relation


• If e1 ➝ e2 then e1 happened before e2 and could have caused it


• A consistent picture of the global state is obtained if we include in our 
computation a set of possible events, H, such that 


ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H


• If ei were in H, but ej were not, then the set of events would include the effect 
of an event (for instance, the receipt of a file), but not the event causing it (the 
sending of the file), and an inconsistent picture would arise

11
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[Distributed Snapshots] Consistent Global State

• A consistent picture of the global state is obtained if we include in our 
computation a set of possible events, H, such that 


ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H


• The consistent GLOBAL STATE is then defined by


GS(H) = The state of each process pi after pi’s last event in H

           + for each channel, the sequence of msgs sent in H but not received in 

              H


• In the distributed systems jargon, we say that consistent global states are 
delimited by a “CUT” representing a consistent picture of the global state of 
the system
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Example: A Possible Computation

13
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Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

14

H contains {e1, e2, e4}

e1

e2

e3e4
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Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H
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e2 e2

e1

e2

e3e4

H contains {e1, e3}
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Example: Inconsistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H
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H contains  
{e1, e3, e4}, but not e2, 
where e2 ➝ e4

e1

e2

e3e4
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How to Construct H?

• Idea: The CUT and associated (consistent) set of events, H, are constructed 
by including specific control messages (MARKERS) in the stream of ordinary 
messages


• Remember that we assume that: 


‣ Channels are all FIFO channels


‣ A transmitted marker will be received (and dealt with) within a FINITE TIME

17
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Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules

18

1.SEND MARKERS


Record pi’s state

Before sending any more messages from pi, send a marker on each 
channel cij directed away from pi

2.RECEIVE MARKER


On arrival of a marker via channel cji: 

IF        pi has not recorded its state


THEN SEND MARKERS rule; record cji’s state as empty


ELSE  record cji’s state as the sequence of messages received on cji since 
pi last noted its state
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Chandy and Lamport’s Algorithm to Construct H

• The algorithm can be initiated by any process by executing the rule SEND 
MARKERS


‣ Multiple processes can initiate the algorithm concurrently!


‣ Each initiation needs to be distinguished by using unique markers


‣ Different initiations by a process are identified by a sequence number


• The algorithm terminates after each process has received a marker on all of 
its incoming channels

19
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Example 1: The Algorithm In Action...

20

The computation

Time
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Example 1 (cont.): The Algorithm In Action...

21

p1 initiates the algorithm

m1

m2



DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...

22

p1 initiates the algorithm

m1

m2

m3

m4
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Example 1 (cont.): The Algorithm In Action...
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p1 initiates the algorithm

m1

m2

m3

m4m5



DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...
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p1 initiates the algorithm

CUT
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Example 2: The Algorithm In Action...
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p2 initiates the algorithm
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Example 2 (cont.): The Algorithm In Action...
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p2 initiates the algorithm
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Example 2 (cont.): The Algorithm In Action...
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p2 initiates the algorithm
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Example 2 (cont.): The Algorithm In Action...
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p2 initiates the algorithm

CUT
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How the Global Snapshot is Then Collected?

• In a practical implementation, the recorded local snapshots must be put 
together to create a global snapshot of the distributed system


• How? Several policies:


‣ each process sends its local snapshot to the initiator of the algorithm


‣ each process sends the information it records along all outgoing channels 
and each process receiving such information for the first time propagates 
it along its outgoing channels

29
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Complexity of the Snapshot Algorithm

• The recording part of a single instance of the algorithm requires:


‣ O(e) messages, where e is the number of edges in the network


‣ O(d) time, where d is the diameter of the network

30

• Diameter of a network: the longest of all the shortest paths in a network
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How is That Possible??!!

31

CUT CUT

In both these possible runs of 
the algorithm, the recorded 

global states NEVER occurred 
in the actual execution!
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Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events. 

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing

relationship of e3 and e5.

With respect to ➝, e3 and e5 are incomparable!

32

We cannot determine what the 
true sequence of these events is!

• When we record a process’ state, we are unable to know whether the events 
which we have already seen in this process lay before or after incomparable 
events in other processes
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So... What Does the Algorithm Find?

• Pre-recording events: events in a computation which take place BEFORE the 
process in which they occur records its own state


• Post-recording events: all other events


• The algorithm finds a global state which corresponds to a PERMUTATION of 
the actual order of the events, such that all pre-recording events come before 
all post-recording events 

• The recorded global state, S*, is the one which would be found after all the 
pre-recording events and before all the post-recording events

33
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Example

34

pre-recording events: {e2, e5}

recorded 

global state
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Example

35

pre-recording events: {e1, e2, e5}

recorded 

global state
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Global State Could Possibly Have Occurred! 

• S* is a state which could possibly have occurred, in the sense that:


‣ It is possible to reach S* via a sequence of possible events starting from 
the initial state of the system, Si (in the previous example: <e1, e2, e5>)


‣ It is possible to reach the final state of the system, Sf, via a sequence of 
possible events starting from S* (in the previous example: <e3, e4, e6>)

36
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Oh Man... So Why Recording Global State?

• Stable property: a property that persists, such as termination or deadlock


• Idea: if a stable property holds in the system before the snapshot begins, it 
holds in the recorded global snapshot


• A recorded global state is useful in DETECTING STABLE PROPERTIES


• Examples:


‣ Failure recovery: a global state (checkpoint) is periodically saved and 
recovery from a process failure is done by restoring the system to the last 
saved global state


‣ Debugging: the system is restored to a consistent global state and the 
execution resumes from there in a controlled manner

37
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Outline

• Global State - what is a global state of a distributed system?


‣ definition


‣ next global state


• Distributed Snapshot - how to record a global state of a distributed system? 

‣ consistent global states


‣ Chandy and Lamport’s algorithm


• Evaluating Predicates - why/how to use the recorded global states?  

‣ evaluating Stable Predicates


‣ evaluating Non Stable Predicates
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Stable Predicates
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The Problem

• Let Ʃ be a global state built by one of the methods in literature


• It represents a state of the past, that may have no bearing to the present


• Does it make sense to evaluate predicate Φ on it?


• A special case: stable predicates


Many systems properties have the characteristics that once they become 
true, they remain true


‣ Deadlock


‣ Garbage collection


‣ Termination

40
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Run of a Computation

• A run of a computation is a total ordering R that includes all the events in the 
global history and that is consistent with each local history


‣ In other words, the events of pi appear in R in the same order in which they 
appear in hi 

‣ A run corresponds to the notion that events in a distributed computation 
actually occur in a total order


‣ A distributed computation may correspond to many runs


• A run R is said to be consistent if for all events e and e’, e ➝ e’ implies that e 
appears before e’ in R

41



DTU Compute
Department of Applied Mathematics and Computer Science

Example of (Consistent) Run

42
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Run as Sequence of Consistent Global States

• A consistent run R = e1e2… results in a sequence of consistent global 
states Ʃ0Ʃ1Ʃ2…, where Ʃ0 denotes the initial global state (σ10, …, σn0)


• Each (consistent) global state Ʃi of the run is obtained from the previous state 
Ʃi-1 by some process executing the single event ei


• We use the term run to refer to both the sequence of events and the 
sequence of resulting global states

43

Ʃ0 Ʃ1
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“Leads To” Relation (⇝)

• For 2 global states of a consistent run R, we say that a global state Ʃ leads 
to a global state Ʃ’ in R (Ʃ ⇝R Ʃ’) if:


‣ R results in a sequence of global states Ʃ0Ʃ1Ʃ2… 

‣ Ʃ = Ʃi, Ʃ’ = Ʃj, i < j


• We write Ʃ ⇝ Ʃ’ if there is a run R such that Ʃ ⇝R Ʃ’

44

Ʃ0 ⇝ Ʃ1
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Lattice

45

• The set of all consistent global states of a computation along with the 
leads-to relation defines a lattice 

• n orthogonal axis, one per process


• Ʃk1…kn shorthand for the global state (σ1k1, …, σnkn) 

‣ Example: n = 2, Ʃ01 = (σ10, σ21) = (∅, e21)


•  The level of Ʃk1…kn is equal to k1 + … + kn


• A path in the lattice is a sequence of global states of increasing levels that 
corresponds to a consistent run
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Example
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Example
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Example
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Example
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Example
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Example
One possible run may pass through the 
sequence of global states:
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Why?

?

?

?
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Stable Predicates

• Consider a global state construction protocol:


‣ Let Ʃa be the global state in which the protocol is initiated


‣ Let Ʃf be the global state in which the protocol terminates


‣ Let Ʃs be the global state constructed by the protocol


• Since Ʃa ⇝ Ʃs ⇝ Ʃf, if Φ is stable, then:


Φ(Ʃs) = true ⇒ Φ(Ʃf) = true 

Φ(Ʃs) = false ⇒ Φ(Ʃa) = false

53
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Non Stable Predicates
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Problems of Non-Stable Predicates

• The condition encoded by the predicate may not persist long enough for it to 
be true when the predicate is evaluated


• If a predicate Φ is found to be true, we do not know whether Φ ever held 
during the actual run


Conclusions


• Evaluating a non-stable predicate over a single computation makes no sense


• The evaluation must be extended to the entire lattice of the computation


• It is possible to evaluate a predicate over an entire computation using an 
observation obtained by a passive monitor

55
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Passive Monitor

• A single process p0 called monitor is responsible for evaluating Φ


• We assume that p0 is distinct from p1 … pn


• At each (relevant - state change) event, a node sends a message to the 
monitor describing it local state


• The monitor collects messages to reconstruct the global state


• The sequence of events corresponding to the order in which notification 
messages arrive at the monitor is called an observation


• Given the asynchronous nature of our distributed system, any permutation of 
a run R is a possible observation of it

56
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Example of Observations

57
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Observations vs Runs

• A run of a distributed computation is a total ordering R of its events that 
corresponds to an actual execution 

• An observation is a total ordering Ω of events constructed from within the 
system 


• A single run may have many observations

• An observation can correspond to:

‣ A consistent run

‣ A run which is not consistent

‣ No run at all

Homework: can you find example of the three cases? Can you explain why 
this happen?


• Consistent Observation: An observation is consistent if it corresponds to a 
consistent run
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Possibly And Definitely

• PROBLEM: By means of a passive monitor, we want to know if a non-stable 
predicate possibly occurred or definitely occurred


‣ Possibly(Φ): There exists a consistent observation O of the computation 
such that Φ holds in a global state of O


‣ Definitely(Φ): For every consistent observation O of the computation, there 
exists a global state of O in which Φ holds


• Debugging: If Possibly(Φ) is true, and it identifies some erroneous state of 
the computation, than there is a bug, even if it is not observed during an 
actual run

59
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Example
Possibly((y - x) = 2)


Definitely(x = y)
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Possibly And Definitely Are Not Duals

61

Example 
(of the latter):
Possibly(x ≠ y)
Definitely(x = y)
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Algorithms For Detecting Possibly And Definitely

• We use the passive approach in which processes send notifications of events 
relevant to Φ to the monitor p0


• Events are tagged with vector clocks


• The monitor collects all the events and builds the lattice of global states


• HOMEWORK: HOW?

62
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Algorithm For Detecting Possibly

63

The  algorithm  constructs  the  set  of  global 
states current with progressively increasing 
levels (denoted by l). 

When a member of current satisfies Φ, then
the  procedure  terminates  indicating  that 
Possibly(Φ) holds. 

If, however, the procedure constructs the final 
global  state  and  finds  that  this  global  state 
does not satisfy Φ, then the procedure returns 
¬Possibly(Φ).
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Algorithm For Detecting Definitely
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The algorithm iteratively constructs the set of 
global states (current) that have a level l and 
are  reachable  from  the  initial  global  state 
without  passing through a  global  state  that 
satisfies Φ.
 
If this set is empty, then Definitely(Φ) holds.

If this set contains only the final global state 
then ¬Definitely(Φ) holds.


