
DTU Compute
Department of Applied Mathematics and Computer Science

Global States
Nicola Dragoni
Embedded Systems Engineering
DTU Informatics

Introduction

Clock, Events and Process States

Logical Time and Logical Clocks

Global States

DTU Compute
Department of Applied Mathematics and Computer Science

Outline

• Global State - what is a global state of a distributed system?

‣ definition

‣ next global state

• Distributed Snapshot - how to record a global state of a distributed system?

‣ consistent global states

‣ Chandy and Lamport’s algorithm

• Evaluating Predicates - why/how to use the recorded global states?

‣ evaluating Stable Predicates

‣ evaluating Non Stable Predicates

2

DTU Compute
Department of Applied Mathematics and Computer Science

Problem: Finding the Global State

• Problem: to find the global state of a distributed system (in which data items
can move from one part of the system to another)

• Why? There are innumerable uses for this, for instance:

‣ finding the total number of files in a distributed file system, where files may
be moved from one file server to another

‣ finding the total space occupied by files in such a distributed file system

‣ in general, to detect global properties of the distributed system, such as
garbage collection, deadlock, termination

3

• Solution: distributed snapshot algorithm

 (Chandy and Lamport, 1985)

DTU Compute
Department of Applied Mathematics and Computer Science

Global State

• Idea: global states are described by

1) the states of the participating PROCESSES, together with

2) the states of the CHANNELS through which data (i.e., the files) pass when
being transferred between these processes

4

N.B.: ∑Money = £235

DTU Compute
Department of Applied Mathematics and Computer Science

Events

• Event e = <p, s, s’, M, c> is only possible in global state S if:

1.p’s state in S is just exactly s

2. If c is directed towards p, then c’s state in S must be a sequence of
messages with M at its head

5

• Each event is described by 5 components: e = <p, s, s’, M, c>

‣ Process p goes from state s to state s’

‣ Message M is sent or received on channel c

• A possible computation of the system is a sequence of possible events,
starting from the initial global state of the system

DTU Compute
Department of Applied Mathematics and Computer Science

Next Global State

• If e = <p, s, s’, M, c> takes place in global state S, then the following global
state is next(S, e), where:

1.p’s state in next(S, e) is s’

2. If c is directed towards p, then c’s state in next(S, e) is c’s state in S, with
M removed from the head of the message sequence

3. If c is directed away from p, then c’s state in next(S, e) is c’s state in S,
with M added to the tail of the message sequence

6

DTU Compute
Department of Applied Mathematics and Computer Science

Example: A Possible Computation

• cij denotes the channel which can carry messages from pi to pj

• System configuration:

7

DTU Compute
Department of Applied Mathematics and Computer Science

Outline

• Global State - what is a global state of a distributed system?

‣ definition

‣ next global state

• Distributed Snapshot - how to record a global state of a distributed system?

‣ consistent global states

‣ Chandy and Lamport’s algorithm

• Evaluating Predicates - why/how to use the recorded global states?

‣ evaluating Stable Predicates

‣ evaluating Non Stable Predicates

8

DTU Compute
Department of Applied Mathematics and Computer Science

[Distributed Snapshots] The Question

Can we now find rules for

when to take snapshots of

the individual processes and channels

so as to build up a consistent picture of

the global state S?

9

DTU Compute
Department of Applied Mathematics and Computer Science

Assumptions

• The algorithm relies on two main assumptions:

‣ Channels are ERROR-FREE and SEQUENCE PRESERVING (FIFO)

‣ Channels deliver transmitted msgs after UNKNOWN BUT FINITE DELAY

• Other assumptions:

‣ The only events in the system which can give rise to changes in the state
are communicating events

10

DTU Compute
Department of Applied Mathematics and Computer Science

[Distributed Snapshots] Consistent Picture

• Let us consider the happened-before relation

• If e1 ➝ e2 then e1 happened before e2 and could have caused it

• A consistent picture of the global state is obtained if we include in our
computation a set of possible events, H, such that

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• If ei were in H, but ej were not, then the set of events would include the effect
of an event (for instance, the receipt of a file), but not the event causing it (the
sending of the file), and an inconsistent picture would arise

11

DTU Compute
Department of Applied Mathematics and Computer Science

[Distributed Snapshots] Consistent Global State

• A consistent picture of the global state is obtained if we include in our
computation a set of possible events, H, such that

ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

• The consistent GLOBAL STATE is then defined by

GS(H) = The state of each process pi after pi’s last event in H

 + for each channel, the sequence of msgs sent in H but not received in

 H

• In the distributed systems jargon, we say that consistent global states are
delimited by a “CUT” representing a consistent picture of the global state of
the system

12

DTU Compute
Department of Applied Mathematics and Computer Science

Example: A Possible Computation

13

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

14

H contains {e1, e2, e4}

e1

e2

e3e4

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Consistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

15

e2 e2

e1

e2

e3e4

H contains {e1, e3}

DTU Compute
Department of Applied Mathematics and Computer Science

Example: Inconsistent Cut

• REMEMBER: The CUT limiting H is defined by: ei ∈ H ∧ ej ➝ ei ⇒ ej ∈ H

16

H contains
{e1, e3, e4}, but not e2,
where e2 ➝ e4

e1

e2

e3e4

DTU Compute
Department of Applied Mathematics and Computer Science

How to Construct H?

• Idea: The CUT and associated (consistent) set of events, H, are constructed
by including specific control messages (MARKERS) in the stream of ordinary
messages

• Remember that we assume that:

‣ Channels are all FIFO channels

‣ A transmitted marker will be received (and dealt with) within a FINITE TIME

17

DTU Compute
Department of Applied Mathematics and Computer Science

Chandy and Lamport’s Algorithm to Construct H

• Process pi follows two rules

18

1.SEND MARKERS

Record pi’s state

Before sending any more messages from pi, send a marker on each
channel cij directed away from pi

2.RECEIVE MARKER

On arrival of a marker via channel cji:

IF pi has not recorded its state

THEN SEND MARKERS rule; record cji’s state as empty

ELSE record cji’s state as the sequence of messages received on cji since
pi last noted its state

DTU Compute
Department of Applied Mathematics and Computer Science

Chandy and Lamport’s Algorithm to Construct H

• The algorithm can be initiated by any process by executing the rule SEND
MARKERS

‣ Multiple processes can initiate the algorithm concurrently!

‣ Each initiation needs to be distinguished by using unique markers

‣ Different initiations by a process are identified by a sequence number

• The algorithm terminates after each process has received a marker on all of
its incoming channels

19

DTU Compute
Department of Applied Mathematics and Computer Science

Example 1: The Algorithm In Action...

20

The computation

Time

DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...

21

p1 initiates the algorithm

m1

m2

DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...

22

p1 initiates the algorithm

m1

m2

m3

m4

DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...

23

p1 initiates the algorithm

m1

m2

m3

m4m5

DTU Compute
Department of Applied Mathematics and Computer Science

Example 1 (cont.): The Algorithm In Action...

24

p1 initiates the algorithm

CUT

DTU Compute
Department of Applied Mathematics and Computer Science

Example 2: The Algorithm In Action...

25

p2 initiates the algorithm

DTU Compute
Department of Applied Mathematics and Computer Science

Example 2 (cont.): The Algorithm In Action...

26

p2 initiates the algorithm

DTU Compute
Department of Applied Mathematics and Computer Science

Example 2 (cont.): The Algorithm In Action...

27

p2 initiates the algorithm

DTU Compute
Department of Applied Mathematics and Computer Science

Example 2 (cont.): The Algorithm In Action...

28

p2 initiates the algorithm

CUT

DTU Compute
Department of Applied Mathematics and Computer Science

How the Global Snapshot is Then Collected?

• In a practical implementation, the recorded local snapshots must be put
together to create a global snapshot of the distributed system

• How? Several policies:

‣ each process sends its local snapshot to the initiator of the algorithm

‣ each process sends the information it records along all outgoing channels
and each process receiving such information for the first time propagates
it along its outgoing channels

29

DTU Compute
Department of Applied Mathematics and Computer Science

Complexity of the Snapshot Algorithm

• The recording part of a single instance of the algorithm requires:

‣ O(e) messages, where e is the number of edges in the network

‣ O(d) time, where d is the diameter of the network

30

• Diameter of a network: the longest of all the shortest paths in a network

DTU Compute
Department of Applied Mathematics and Computer Science

How is That Possible??!!

31

CUT CUT

In both these possible runs of
the algorithm, the recorded

global states NEVER occurred
in the actual execution!

DTU Compute
Department of Applied Mathematics and Computer Science

Incomparable Events!

• The algorithm finds a global state based on a partial ordering ➝ of events.

For instance, we know that e2 ➝ e3 and e2 ➝ e5

BUT we have no knowledge about the timing

relationship of e3 and e5.

With respect to ➝, e3 and e5 are incomparable!

32

We cannot determine what the
true sequence of these events is!

• When we record a process’ state, we are unable to know whether the events
which we have already seen in this process lay before or after incomparable
events in other processes

DTU Compute
Department of Applied Mathematics and Computer Science

So... What Does the Algorithm Find?

• Pre-recording events: events in a computation which take place BEFORE the
process in which they occur records its own state

• Post-recording events: all other events

• The algorithm finds a global state which corresponds to a PERMUTATION of
the actual order of the events, such that all pre-recording events come before
all post-recording events

• The recorded global state, S*, is the one which would be found after all the
pre-recording events and before all the post-recording events

33

DTU Compute
Department of Applied Mathematics and Computer Science

Example

34

pre-recording events: {e2, e5}

recorded

global state

DTU Compute
Department of Applied Mathematics and Computer Science

Example

35

pre-recording events: {e1, e2, e5}

recorded

global state

DTU Compute
Department of Applied Mathematics and Computer Science

Global State Could Possibly Have Occurred!

• S* is a state which could possibly have occurred, in the sense that:

‣ It is possible to reach S* via a sequence of possible events starting from
the initial state of the system, Si (in the previous example: <e1, e2, e5>)

‣ It is possible to reach the final state of the system, Sf, via a sequence of
possible events starting from S* (in the previous example: <e3, e4, e6>)

36

DTU Compute
Department of Applied Mathematics and Computer Science

Oh Man... So Why Recording Global State?

• Stable property: a property that persists, such as termination or deadlock

• Idea: if a stable property holds in the system before the snapshot begins, it
holds in the recorded global snapshot

• A recorded global state is useful in DETECTING STABLE PROPERTIES

• Examples:

‣ Failure recovery: a global state (checkpoint) is periodically saved and
recovery from a process failure is done by restoring the system to the last
saved global state

‣ Debugging: the system is restored to a consistent global state and the
execution resumes from there in a controlled manner

37

DTU Compute
Department of Applied Mathematics and Computer Science

Outline

• Global State - what is a global state of a distributed system?

‣ definition

‣ next global state

• Distributed Snapshot - how to record a global state of a distributed system?

‣ consistent global states

‣ Chandy and Lamport’s algorithm

• Evaluating Predicates - why/how to use the recorded global states?

‣ evaluating Stable Predicates

‣ evaluating Non Stable Predicates

38

DTU Compute
Department of Applied Mathematics and Computer Science

Stable Predicates

DTU Compute
Department of Applied Mathematics and Computer Science

The Problem

• Let Ʃ be a global state built by one of the methods in literature

• It represents a state of the past, that may have no bearing to the present

• Does it make sense to evaluate predicate Φ on it?

• A special case: stable predicates

Many systems properties have the characteristics that once they become
true, they remain true

‣ Deadlock

‣ Garbage collection

‣ Termination

40

DTU Compute
Department of Applied Mathematics and Computer Science

Run of a Computation

• A run of a computation is a total ordering R that includes all the events in the
global history and that is consistent with each local history

‣ In other words, the events of pi appear in R in the same order in which they
appear in hi

‣ A run corresponds to the notion that events in a distributed computation
actually occur in a total order

‣ A distributed computation may correspond to many runs

• A run R is said to be consistent if for all events e and e’, e ➝ e’ implies that e
appears before e’ in R

41

DTU Compute
Department of Applied Mathematics and Computer Science

Example of (Consistent) Run

42

DTU Compute
Department of Applied Mathematics and Computer Science

Run as Sequence of Consistent Global States

• A consistent run R = e1e2… results in a sequence of consistent global
states Ʃ0Ʃ1Ʃ2…, where Ʃ0 denotes the initial global state (σ10, …, σn0)

• Each (consistent) global state Ʃi of the run is obtained from the previous state
Ʃi-1 by some process executing the single event ei

• We use the term run to refer to both the sequence of events and the
sequence of resulting global states

43

Ʃ0 Ʃ1

DTU Compute
Department of Applied Mathematics and Computer Science

“Leads To” Relation (⇝)

• For 2 global states of a consistent run R, we say that a global state Ʃ leads
to a global state Ʃ’ in R (Ʃ ⇝R Ʃ’) if:

‣ R results in a sequence of global states Ʃ0Ʃ1Ʃ2…

‣ Ʃ = Ʃi, Ʃ’ = Ʃj, i < j

• We write Ʃ ⇝ Ʃ’ if there is a run R such that Ʃ ⇝R Ʃ’

44

Ʃ0 ⇝ Ʃ1

DTU Compute
Department of Applied Mathematics and Computer Science

Lattice

45

• The set of all consistent global states of a computation along with the
leads-to relation defines a lattice

• n orthogonal axis, one per process

• Ʃk1…kn shorthand for the global state (σ1k1, …, σnkn)

‣ Example: n = 2, Ʃ01 = (σ10, σ21) = (∅, e21)

• The level of Ʃk1…kn is equal to k1 + … + kn

• A path in the lattice is a sequence of global states of increasing levels that
corresponds to a consistent run

DTU Compute
Department of Applied Mathematics and Computer Science

Example

DTU Compute
Department of Applied Mathematics and Computer Science

Example

DTU Compute
Department of Applied Mathematics and Computer Science

Example

DTU Compute
Department of Applied Mathematics and Computer Science

Example

DTU Compute
Department of Applied Mathematics and Computer Science

Example

DTU Compute
Department of Applied Mathematics and Computer Science

Example
One possible run may pass through the
sequence of global states:

DTU Compute
Department of Applied Mathematics and Computer Science

Why?

?

?

?

DTU Compute
Department of Applied Mathematics and Computer Science

Stable Predicates

• Consider a global state construction protocol:

‣ Let Ʃa be the global state in which the protocol is initiated

‣ Let Ʃf be the global state in which the protocol terminates

‣ Let Ʃs be the global state constructed by the protocol

• Since Ʃa ⇝ Ʃs ⇝ Ʃf, if Φ is stable, then:

Φ(Ʃs) = true ⇒ Φ(Ʃf) = true

Φ(Ʃs) = false ⇒ Φ(Ʃa) = false

53

DTU Compute
Department of Applied Mathematics and Computer Science

Non Stable Predicates

DTU Compute
Department of Applied Mathematics and Computer Science

Problems of Non-Stable Predicates

• The condition encoded by the predicate may not persist long enough for it to
be true when the predicate is evaluated

• If a predicate Φ is found to be true, we do not know whether Φ ever held
during the actual run

Conclusions

• Evaluating a non-stable predicate over a single computation makes no sense

• The evaluation must be extended to the entire lattice of the computation

• It is possible to evaluate a predicate over an entire computation using an
observation obtained by a passive monitor

55

DTU Compute
Department of Applied Mathematics and Computer Science

Passive Monitor

• A single process p0 called monitor is responsible for evaluating Φ

• We assume that p0 is distinct from p1 … pn

• At each (relevant - state change) event, a node sends a message to the
monitor describing it local state

• The monitor collects messages to reconstruct the global state

• The sequence of events corresponding to the order in which notification
messages arrive at the monitor is called an observation

• Given the asynchronous nature of our distributed system, any permutation of
a run R is a possible observation of it

56

DTU Compute
Department of Applied Mathematics and Computer Science

Example of Observations

57

DTU Compute
Department of Applied Mathematics and Computer Science

Observations vs Runs

• A run of a distributed computation is a total ordering R of its events that
corresponds to an actual execution

• An observation is a total ordering Ω of events constructed from within the
system

• A single run may have many observations

• An observation can correspond to:

‣ A consistent run

‣ A run which is not consistent

‣ No run at all

Homework: can you find example of the three cases? Can you explain why
this happen?

• Consistent Observation: An observation is consistent if it corresponds to a
consistent run

58

DTU Compute
Department of Applied Mathematics and Computer Science

Possibly And Definitely

• PROBLEM: By means of a passive monitor, we want to know if a non-stable
predicate possibly occurred or definitely occurred

‣ Possibly(Φ): There exists a consistent observation O of the computation
such that Φ holds in a global state of O

‣ Definitely(Φ): For every consistent observation O of the computation, there
exists a global state of O in which Φ holds

• Debugging: If Possibly(Φ) is true, and it identifies some erroneous state of
the computation, than there is a bug, even if it is not observed during an
actual run

59

DTU Compute
Department of Applied Mathematics and Computer Science

Example
Possibly((y - x) = 2)

Definitely(x = y)

DTU Compute
Department of Applied Mathematics and Computer Science

Possibly And Definitely Are Not Duals

61

Example
(of the latter):
Possibly(x ≠ y)
Definitely(x = y)

DTU Compute
Department of Applied Mathematics and Computer Science

Algorithms For Detecting Possibly And Definitely

• We use the passive approach in which processes send notifications of events
relevant to Φ to the monitor p0

• Events are tagged with vector clocks

• The monitor collects all the events and builds the lattice of global states

• HOMEWORK: HOW?

62

DTU Compute
Department of Applied Mathematics and Computer Science

Algorithm For Detecting Possibly

63

The algorithm constructs the set of global
states current with progressively increasing
levels (denoted by l).

When a member of current satisfies Φ, then
the procedure terminates indicating that
Possibly(Φ) holds.

If, however, the procedure constructs the final
global state and finds that this global state
does not satisfy Φ, then the procedure returns
¬Possibly(Φ).

DTU Compute
Department of Applied Mathematics and Computer Science

Algorithm For Detecting Definitely

64

The algorithm iteratively constructs the set of
global states (current) that have a level l and
are reachable from the initial global state
without passing through a global state that
satisfies Φ.

If this set is empty, then Definitely(Φ) holds.

If this set contains only the final global state
then ¬Definitely(Φ) holds.

