

1

 By considering a chain of zero or more messages connecting events e and e' and using induction on the length of any sequence of events relating e and e', show that e → e' ⇒ L(e) < L(e').

Exercise 2

- The → relation is an IRREFLEXIVE PARTIAL ORDERING on the set of all events in the distributed system.
 - Irreflexivity: $\neg(a \rightarrow a)$.
 - Partial ordering: not all the events can be related by \rightarrow .

Extend the definition of the \rightarrow relation to create a total ordering \Rightarrow on events (that is, one for which all pairs of distinct events are ordered).

Exercise 3

• Timestamp the following events by means of vector clocks values.


```
Exercise 4
```


1) Discuss why V_j [i] $\leq V_i$ [i], for any j and i.

2) Show that $e \rightarrow e' \Rightarrow V(e) < V(e')$.

3) Using the result of Exercise 4.1), discuss why if events e and e' are concurrent then neither V(e) ≤ V(e') nor V(e') ≤ V(e). Hence discuss why if V(e) < V(e') then e → e'.</p>

DTU Compute Department of Applied Mathematics and Computer Science

Exercise 5

• Violation of causal ordering of messages occurs if msg m arrives with $V_m < V_i$.

• Show that it is impossible to capture this violation if we use Lamport clocks.

- Singhal and Kshemkalyani's technique cuts down the storage overhead at each process from O(n²) to ...
- Explain why.