
DTU Compute
Department of Applied Mathematics and Computer Science

Introduction to P2P Computing
Nicola Dragoni
Embedded Systems Engineering
DTU Compute

1. Introduction

A. Peer-to-Peer vs. Client/Server

B. Overlay Networks

2. Common Topologies

3. Data location

4. Gnutella Protocol

DTU Compute
Department of Applied Mathematics and Computer Science

From the First Lecture (Architectural Models)...

2

• The architecture of a system is its structure in terms of separately specified
components and their interrelationships

• 4 fundamental building blocks (and 4 key questions):

‣ Communicating entities: what are the entities that are communicating in
the distributed system?

‣ Communication paradigms: how do these entities communicate, or,
more specifically, what communication paradigm is used?

‣ Roles and responsibilities: what (potentially changing) roles and
responsibilities do these entities have in the overall architecture?

‣ Placement: how are these entities mapped on to the physical distributed
infrastructure (i.e., what is their placement)?

DTU Compute
Department of Applied Mathematics and Computer Science

To Avoid Any Misunderstanding…

3

DTU Compute
Department of Applied Mathematics and Computer Science

Introduction

4

• Peer-to-peer (P2P) systems have become extremely popular and contribute
to vast amounts of Internet traffic

• P2P basic definition:

A P2P system is a distributed collection of peer nodes, that act both as
servers and as clients
‣ provide services to other peers

‣ consume services from other peers

• Very different from the client-server model!!

DTU Compute
Department of Applied Mathematics and Computer Science

It's a Broad Area…

5

• P2P file sharing

‣ Gnutella

‣ eMule

‣ BitTorrent

• P2P communication

‣ Instant messaging

‣ Voice-over-IP: Skype

• P2P computation

‣ Seti@home

• DHTs & their apps

‣ Chord, CAN, Kademlia, …

• P2P wireless

‣ Ad-hoc networking

DTU Compute
Department of Applied Mathematics and Computer Science

P2P History: 1969 - 1990

6

• The origins:

‣ In the beginning, all nodes in Arpanet/Internet were peers

‣ Each node was capable of:

✓ Performing routing (locate machines)

✓ Accepting ftp connections (file sharing)

✓ Accepting telnet connections (distribution computation)

DTU Compute
Department of Applied Mathematics and Computer Science

P2P History: 1999 - Today

7

• The advent of Napster:

‣ Jan 1999: the first version of Napster was released by Shawn Fanning,

student at the Northeastern University

‣ July 1999: Napster Inc. founded

‣ Feb 2001: Napster closed down

• After Napster:

‣ Gnutella, KaZaa, BitTorrent, …

‣ Skype

‣ Content creation in Wikipedia

‣ Open-source software development

‣ Crowd-sourcing

‣ …

DTU Compute
Department of Applied Mathematics and Computer Science

Napster

8

DTU Compute
Department of Applied Mathematics and Computer Science

Client/Server vs. Peer-to-Peer

9

DTU Compute
Department of Applied Mathematics and Computer Science

Example – Video Sharing (YouTube vs BitTorrent)

10

DTU Compute
Department of Applied Mathematics and Computer Science

Example – Video Sharing (YouTube vs BitTorrent)

11

DTU Compute
Department of Applied Mathematics and Computer Science

P2P vs Client-Server

12

DTU Compute
Department of Applied Mathematics and Computer Science

P2P Environment

• Dynamic

‣ Nodes may disconnect temporarily

‣ New nodes are continuously joining the system, while others leave
permanently

• Security

‣ P2P clients runs on machines under the total control of their owners

‣ Malicious users may try to bring down the system

• Selfishness

‣ Users may run hacked clients in order to avoid contributing resources

13

DTU Compute
Department of Applied Mathematics and Computer Science

Why P2P?

• Decentralisation enables deployment of applications that are:

‣ Highly available

‣ Fault-tolerant

‣ Self-organizing

‣ Scalable

‣ Difficult or impossible to shut down

• This results in a “democratisation” of the Internet

14

DTU Compute
Department of Applied Mathematics and Computer Science

P2P and Overlay Networks

• Peer-to-Peer networks are usually “overlays”

• Logical structures built on top of a physical routed communication
infrastructure (IP) that creates the allusion of a completely-connected graph

15

An overlay network is a virtual network of nodes and logical links that
is built on top of an existing network with the purpose to implement a
network service that is not available in the existing network

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

16

Overlay Network: links based on logical relationships
(“knows”) rather than physical connectivity

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

17

Physical network: “who has a communication link to whom”

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

18

Logical network: “who can communicate with whom”

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

19

Overlay network (ring): “who knows whom”

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Network

20

Overlay network (tree): “who knows whom”

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

• Virtual edge

‣ TCP connection

‣ or simply a pointer to an IP address

• Overlay maintenance

‣ Periodically ping to make sure neighbour is still alive

‣ Or verify liveness while messaging

‣ If neighbour goes down, may want to establish new edge

21

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Networks

• Tremendous design flexibility

‣ Topology

‣ Message types

‣ Protocols

‣ Messaging over TCP or UDP

• Underlying physical net is transparent

to developer

22

DTU Compute
Department of Applied Mathematics and Computer Science

P2P Problems

• Overlay construction and maintenance

‣ e.g., random, two-level, ring, etc.

• Data location

‣ locate a given data object among a large number of nodes

• Data dissemination

‣ propagate data in an efficient and robust manner

• Per-node state

‣ keep the amount of state per node small

• Tolerance to churn (dynamic system)

‣ maintain system invariants (e.g., topology, data location, data availability)
despite node arrivals and departures

23

DTU Compute
Department of Applied Mathematics and Computer Science

P2P Topologies

1. Introduction

A. Peer-to-Peer vs. Client/Server

B. Overlay Networks

2. Common Topologies

3. Data location

4. Gnutella Protocol

DTU Compute
Department of Applied Mathematics and Computer Science

Overlay Topologies

25

DTU Compute
Department of Applied Mathematics and Computer Science

Evaluating Topologies

• Manageability

‣ How hard is it to keep working?

• Information coherence

‣ How reliable is info?

• Extensibility

‣ How easy is it to grow?

• Fault tolerance

‣ How well can it handle failures?

• Censorship

‣ How hard is it to shut down?

26

DTU Compute
Department of Applied Mathematics and Computer Science

Evaluating Topologies: Centralized

• Manageable (how hard is it to keep working?)

‣ System is all in one place

• Coherent (how reliable is info?)

‣ Information is centralized

• Extensible (how easy is it to grow?)

‣ No

• Fault tolerance (how well can it handle failures?)

‣ Single point of failure

• Censorship (how hard is it to shut down?)

‣ Easy to shut down

27

DTU Compute
Department of Applied Mathematics and Computer Science

Evaluating Topologies: Hierarchical

• Manageable (how hard is it to keep working?)

‣ Chain of authority

• Coherent (how reliable is info?)

‣ Cache consistency

• Extensible (how easy is it to grow?)

‣ Add more leaves, rebalance

• Fault tolerance (how well can it handle failures?)

‣ Root is vulnerable

• Censorship (how hard is it to shut down?)

‣ Just shut down the root

28

DTU Compute
Department of Applied Mathematics and Computer Science

Evaluating Topologies: Decentralized

• Manageable (how hard is it to keep working?)

‣ Difficult, many owners

• Coherent (how reliable is info?)

‣ Difficult, unreliable peers

• Extensible (how easy is it to grow?)

‣ Anyone can join in

• Fault tolerance (how well can it handle failures?)

‣ Redundancy

• Censorship (how hard is it to shut down?)

‣ Difficult to shut down

29

DTU Compute
Department of Applied Mathematics and Computer Science

Evaluating Topologies: Centralized + Decentralized

• Manageable (how hard is it to keep working?)

‣ Same as decentralized

• Coherent (how reliable is info?)

‣ Better than decentralized

• Extensible (how easy is it to grow?)

‣ Anyone can join in

• Fault tolerance (how well can it handle failures?)

‣ Redundancy

• Censorship (how hard is it to shut down?)

‣ Difficult to shut down

30

DTU Compute
Department of Applied Mathematics and Computer Science

Searching VS Addressing

• Two basic ways to find objects:

‣ Search for them

‣ Address them using their unique name

• Difference between searching and addressing is fundamental

‣ Determines how network is constructed

‣ Determines how objects are placed

‣ Determines efficiency of object location

31

DTU Compute
Department of Applied Mathematics and Computer Science

Searching VS Addressing

• “Addressing” networks: find objects by addressing them with their unique
name (cf. URLs in Web)

• “Searching” networks: find objects by searching with keywords that match
objects’s description (cf. Google)

32

DTU Compute
Department of Applied Mathematics and Computer Science

Unstructured VS Structured P2P Networks

• Unstructured networks

‣ Based on searching

‣ Unstructured does NOT mean complete lack of structure

‣ Network has structure, but peers are free to join anywhere and objects can
be stored anywhere

• Structured networks

‣ Based on addressing

‣ Network structure determines where peers belong in the network and where
objects are stored

33

DTU Compute
Department of Applied Mathematics and Computer Science

Some Common Topologies

• Flat unstructured: a node can connect to any other node

‣ only constraint: maximum degree dmax

‣ fast join procedure

‣ good for data dissemination, bad for location

• Two-level unstructured: nodes connect to a superpeer

‣ superpeer form a small overlay

‣ used for indexing and forwarding

‣ high load on superpeer

• Flat structured: constraints based on node ids

‣ allows for efficient data location

‣ constraints require long join and leave procedures

34

DTU Compute
Department of Applied Mathematics and Computer Science

Data Location (Lookup)

1. Introduction

A. Peer-to-Peer vs. Client/Server

B. Overlay Networks

2. Common Topologies

3. Data location

4. Gnutella Protocol

DTU Compute
Department of Applied Mathematics and Computer Science

Lookup Problem

• Node A wants to store a data item D

• Node B wants to retrieve D without prior knowledge of D’s current location

How should the distributed system, especially data placement and retrieval,
be organized (in particular, with regard to scalability and efficiency)?

36

DTU Compute
Department of Applied Mathematics and Computer Science

Strategies to Store and Retrieve Data

• Central servers

• Flooding

• Distributed indexing (Distributed Hash Tables)

• Superpeers

• Loosely structured overlays

37

DTU Compute
Department of Applied Mathematics and Computer Science

Big O Notation

• Big O notation is widely used by computer scientists to concisely describe
the behavior of algorithms

• Specifically describes the worst-case scenario, and can be used to describe
the execution time required or the space used by an algorithm

• Common types of orders

‣ O(1) – constant

‣ O(log n) – logarithmic

‣ O(n) – linear

‣ O(n2) – quadratic

38

DTU Compute
Department of Applied Mathematics and Computer Science

Central Server

(1) Node A publishes its content on the central server S

(2) Some node B requests the actual location of a data item D from the central

server S

(3) If existing, S replies with the actual location of D

(4) The requesting node B transmits the content directly from node A

39

DTU Compute
Department of Applied Mathematics and Computer Science

Central Server: Pros and Cons

• Approach of first generation Peer-to-Peer systems, such as Napster

• Advantages

‣ search complexity of O(1) – the requester just has to know the central server

‣ fuzzy and complex queries possible, since the server has a global overview
of all available content

• Disadvantages

‣ The central server is a critical element concerning scalability and availability

‣ Since all location information is stored on a single machine, the complexity
in terms of memory consumption is O(N), with N representing the number of
items available in the distributed system

‣ The server also represents a single point of failure and attack

40

DTU Compute
Department of Applied Mathematics and Computer Science

Strategies to Store and Retrieve Data

• Central servers

• Flooding

• Distributed indexing (Distributed Hash Tables)

• Superpeers

• Loosely structured overlays

41

DTU Compute
Department of Applied Mathematics and Computer Science

Flooding Search

• Approach of the so-called second generation of Peer-to-Peer systems [first
Gnutella protocol]

• Key idea: no explicit information about the location of data items in other
nodes, other than the nodes actually storing the content

‣ No additional information concerning where to find a specific item in the
distributed system

‣ Thus, to retrieve an item D the only chance is to ask (broadcast) as much
participating nodes as necessary, whether or not they presently have item D

‣ If a node receives a query, it floods this message to other nodes until a
certain hop count (Time to Live – TTL) is exceeded

42

DTU Compute
Department of Applied Mathematics and Computer Science

Flooding Search - Idea

• No routing information is maintained in intermediate nodes

(1) Node B sends a request for item D to its “neighbours”, who forward the

request to further nodes in a recursive manner (flooding/breadth-first
search)

(2) Nodes storing D send an answer to B; D is then transmitted directly from
the answering node(s)

43

DTU Compute
Department of Applied Mathematics and Computer Science

[Flooding] Search Horizon

• Search results are not guaranteed: flooding stopped by TTL, which produces
search horizon

44

Objects that lie outside of the horizon are not found

DTU Compute
Department of Applied Mathematics and Computer Science

Flooding: Pros and Cons

• Advantages:

✓simplicity

✓no topology constraints

✓storage cost is O(1) because data is only stored in the nodes actually

providing the data – whereby multiple sources are possible – and no
information for a faster retrieval of data items is kept in intermediate nodes

• Disadvantages:

✓broadcast mechanism that does not scale well

✓high network overhead (huge traffic generated by each search request)

✓complexity of looking up and retrieving a data item is O(N2)

✓search results are not guaranteed: flooding stopped by Time-To-Live

✓only applicable to small number of nodes

45

DTU Compute
Department of Applied Mathematics and Computer Science

Why System Design is Important…

After the central server of Napster was shut down in
July 2001 due to a court decision,

an enormous number of Napster users migrated to the
Gnutella network within a few days

—> under this heavy network load the system
collapsed

46

DTU Compute
Department of Applied Mathematics and Computer Science

Strategies to Store and Retrieve Data

• Central servers

• Flooding

• Distributed indexing (Distributed Hash Tables)

• Superpeers

• Loosely structured overlays

47

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Indexing – Distributed Hash Tables

• Both central servers and flooding-based searching exhibit crucial bottlenecks
that contradict the targeted scalability and efficiency of P2P systems

• Desired scalability: search and storage complexity O(log n), even if the
system grows by some orders of magnitude

48
Storage Cost per Node

Se
ar

ch
 E
ffo

rt

DTU Compute
Department of Applied Mathematics and Computer Science

Recall: Hash Tables

• Hash tables are a well-known data structure

• Hash tables allow insertions, deletions, and finds in constant (average) time

• Hash table is a fixed-size array

‣ Elements of array also called hash buckets

• Hash function maps keys to elements in the array

• Properties of good hash functions:

‣ Fast to compute

‣ Good distribution of keys into hash table

‣ Example: SHA-1 algorithm

49

DTU Compute
Department of Applied Mathematics and Computer Science

Hash Tables: Example

• Hash function maps keys to elements in the array

50

• Hash function: hash(k) = k mod 10

• Insert keys 0, 1, 4, 9, 16, and 25

• Easy to find if a given key is present
in the table

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Hash Table: Idea

• Hash tables are fast for lookups (O(1))

• Idea: distribute hash buckets to nodes

• Nodes form an overlay network

‣ Route messages in overlay to find responsible
node

‣ Routing scheme in the overlay network is the
difference between different DHTs

• Result is Distributed Hash Table (DHT)

51

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Indexing – Distributed Hash Tables

• A P2P algorithm that offers an associative Map interface:

‣ put(Key k; Value v): associate a value/item v to the key k

‣ Value get(Key k): returns the value associated to key k

• Distributed Hash Tables: map keys to nodes

• Organization:

‣ Each node is responsible for a portion of the key space

‣ Messages are routed between nodes to reach responsible nodes

‣ Replication used to tolerate failures

52

DTU Compute
Department of Applied Mathematics and Computer Science

Route Puts/Gets Through the Overlay

53

DTU Compute
Department of Applied Mathematics and Computer Science

DHT Implementations

• The founders (2001):

‣ Chord, CAN, Pastry, Tapestry

• The ones which are actually used:

‣ Kademlia and its derivatives (up to 4M nodes!)

✓BitTorrent, Kad (eMule), The Storm Botnet

‣ Cassandra DHT

✓Part of Apache Cassandra

✓Initially developed at Facebook

• The ones which are actually used, but we don't know much about:

‣ Microsoft DHT based on Pastry

‣ Amazon's Dynamo key-value store

54

DTU Compute
Department of Applied Mathematics and Computer Science

Step 1: From Keys and Nodes to IDs

• Keys and nodes are represented by identifiers taken from the same ID space

‣ Key identifiers: computed through an hash function (e.g., SHA-1)

e.g., ID(k) = SHA1(k)

‣ Node identifiers: randomly assigned or computed through an hash function

e.g., ID(n) = SHA1(IP address of n)

• Why?

‣ Very low probability that two nodes have exactly the same ID

‣ Nodes and keys are mapped in the same space

55

DTU Compute
Department of Applied Mathematics and Computer Science

Step 2: Partition the ID Space

• Each node in the DHT stores some k, v pairs.

• Partition the ID space in zones, depending on the node IDs:

‣ a pair (k, v) is stored at the node n such that (examples):

✓its identifier ID(n) is the closest to ID(k);

✓its identifier ID(n) is the largest node id smaller than ID(k)

56

Keys are assigned to their successor node

DTU Compute
Department of Applied Mathematics and Computer Science

Step 3: Build Overlay Network

• Each DHT node manages a O(log n) references to other nodes, where n is the
number of nodes in the system

• Each node has two sets of neighbors:

‣ Immediate neighbors in the key space (leafs)

✓Guarantee correctness, avoid partitions

✓But with only them, linear routing time

‣ Long-range neighbours

✓Allow sub-linear routing

✓But with only them, connectivity problems

57

DTU Compute
Department of Applied Mathematics and Computer Science

Step 4: Route Puts/Gets Through the Overlay

• Recursive routing: the initiator starts the process, contacted nodes forward
the message

• Iterative routing: the initiator personally contact the nodes at each routing
step

58

DTU Compute
Department of Applied Mathematics and Computer Science

Routing Around Failures (1)

• Under churn, neighbors may have failed

• To detect failures, acknowledge each hop (recursive routing)

59

DTU Compute
Department of Applied Mathematics and Computer Science

Routing Around Failures (2)

• If we don't receive ack or response, resend through a different neighbor

60

DTU Compute
Department of Applied Mathematics and Computer Science

Routing Around Failures (3)

• Must compute timeouts carefully

‣ If too long, increase put/get latency

‣ If too short, get message explosion

• Parallel sending could be a design decision (see Kademlia)

61

DTU Compute
Department of Applied Mathematics and Computer Science

Computing Good Timeouts

• Use TCP-style timers

‣ Keep past history of latencies

‣ Use this to compute timeouts for new requests

• Works fine for recursive lookups

‣ Only talk to neighbors, so history small, current

• In iterative lookups, source directs entire lookup

‣ Must potentially have good timeout for any node

62

DTU Compute
Department of Applied Mathematics and Computer Science

Recovering from Failures

• Can't route around failures forever

‣ Will eventually run out of neighbors

• Must also find new nodes as they join

‣ Especially important if they're our immediate predecessors or successors

63

DTU Compute
Department of Applied Mathematics and Computer Science

Recovering from Failures

• Reactive recovery

‣ When a node stops sending acknowledgments, notify other neighbors of

potential replacements

• Proactive recovery

‣ Periodically, each node sends its neighbor list to each of its neighbors

64

DTU Compute
Department of Applied Mathematics and Computer Science

DHT: Pros and Cons

65

• Advantages:

‣ completely decentralized (no need for superpeers)

‣ routing algorithm achieves low hop count (O(log n))

‣ storage cost per node: O(log n)

‣ if a data item is stored in the system, the DHT guarantees that the data is

found

• Disadvantages:

‣ objects are tracked by unreliable nodes (which may disconnect)

‣ keyword-based searches are more difficult to implement than with

superpeers (because objects are located by their objectid)

‣ the overlay must be structured according to a given topology in order to

achieve a low hop count

‣ routing tables must be updated every time a node joins or leaves the

overlay

DTU Compute
Department of Applied Mathematics and Computer Science

Comparison of Basic Lookup Concepts

66

DTU Compute
Department of Applied Mathematics and Computer Science

Strategies to Store and Retrieve Data

• Central servers

• Flooding

• Distributed indexing (Distributed Hash Tables)

• Superpeers

• Loosely structured overlays

67

DTU Compute
Department of Applied Mathematics and Computer Science

Superpeers

• Two-level overlay: use superpeers to track the locations of an object
[Gnutella 2, BitTorrent]

‣ Each node connects to a superpeer and advertises the list of objects it
stores

‣ Search requests are sent to the supernode, which forwards them to other
super nodes

‣ Advantages: highly scalable

‣ Disadvantages:

✓superpeers must be reliable, powerful and well connected to the Internet
(expensive)

✓superpeers must maintain large state

✓the system relies on a small number of superpeers

68

DTU Compute
Department of Applied Mathematics and Computer Science

Superpeers Example

• A two-level overlay is a partially centralized system

• In some systems, superpeers may be disconnected (e.g., BitTorrent)

69

DTU Compute
Department of Applied Mathematics and Computer Science

Strategies to Store and Retrieve Data

• Central servers

• Flooding

• Distributed indexing (Distributed Hash Tables)

• Superpeers

• Loosely structured overlays

70

DTU Compute
Department of Applied Mathematics and Computer Science

Loosely Structured Overlays

• Loosely structured networks: use hints for the location of objects [Freenet]

‣ Nodes locate objects by sending search requests containing the objectId

‣ Requests are propagated using a technique similar to flooding

‣ Objects with similar identifiers are grouped on the same nodes

71

DTU Compute
Department of Applied Mathematics and Computer Science

Loosely Structured Overlays (cont.)

• A search response leaves routing hints on the path back to the source

• Hints are used when propagating future requests for similar object ids

72

DTU Compute
Department of Applied Mathematics and Computer Science

Loosely Structured Overlays: Pros and Cons

• Advantages:

‣ no topology constraints, flat architecture

‣ searches are more efficient than with plain flooding

• Disadvantages:

‣ does not support keyword-based searches

‣ search requests have a TTL

‣ do not guarantee a low number of hops, nor that the object will be found

73

DTU Compute
Department of Applied Mathematics and Computer Science

Data Location - Classification

74

• Classification of some (well known) P2P middleware according to structure
and decentralisation

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Protocol

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella: Brief History

• Nullsoft (a subsidiary of AOL) released Gnutella on March 14th, 2000,
announcing it on Slashdot

• AOL removed Gnutella from Nullsoft servers on March 15th, 2000

• After a few days, the Gnutella protocol was reverse-engineered

• Napster was shutdown in early 2001, spurring the popularity of Gnutella

• On October 2010, LimeWire (a popular client) was shutdown by court's order

76

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella

• Gnutella is a protocol for peer-to-peer search, consisting of:

‣ A set of message formats

✓5 basic message types

‣ A set of rules governing the exchange of messages

✓Broadcast

✓Back-propagate

✓Handshaking

‣ An hostcache for node bootstrap

77

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Topology: Unstructured

78

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Routing

79

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Routing

80

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Routing

81

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Routing

82

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Messages

• Each message is composed of:

‣ A 16-byte ID field uniquely identifying the message

✓randomly generated

✓not related to the address of the requester (anonymity)

✓used to detect duplicates and route back-propagate messages

‣ A message type field

✓PING, PONG

✓QUERY, QUERYHIT

✓PUSH(for rewalls)

‣ A Time-To-Live (TTL) Field

‣ Payload length

83

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Messages

• PING (broadcast)

‣ Used to maintain information about the nodes currently in the network

‣ Originally, a “who's there" flooding message

‣ A peer receiving a ping is expected to respond with a pong message

84

• PONG (back-propagate)

‣ A pong message has the same ID of the corresponding ping message

‣ Contains:

✓address of connected Gnutella peer

✓total size and total number of files shared by this peer

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Messages

• QUERY (broadcast)

‣ The primary mechanism for searching the distributed network

‣ Contains the query string

‣ A servent is expected to respond with a QUERYHIT message if a match is

found against its local data set

85

• QUERYHIT (back-propagate)

‣ The response to a query

‣ Has the same ID of the corresponding query message

‣ Contains enough info to acquire the data matching the corresponding query

✓IP Address + port number

✓List of file names

DTU Compute
Department of Applied Mathematics and Computer Science

Flooding Search - Step by Step…

• Peers send msgs to neighbouring in the overlay network over pre-existing TCP connections

• The neighbours forward the Query msg to all of their neighbours, recursively

• When a peer receives a Query msg, it checks to see whether the keyword matches any of the

files it is making available for sharing

86

• Once a match is found, it sends back a QueryHit msg,
containing the name and size of the file

• The QueryHit msg follows the reverse path as the
Query msg, using pre-existing TCP connections

• Multiple QueryHit messages may be received, in which
case the user decides which file to download

• The Gnutella process then sets up a direct TCP
connection with the desired user and sends a
HTTPGET message that includes the specific file
name

• The file is sent with a HTTP response message

• Once the entire file is received, the direct TCP

connection is terminated

DTU Compute
Department of Applied Mathematics and Computer Science

Beyond the Original Gnutella

• Several problems in Gnutella 0.4 (the original one):

‣ PING-PONG traffic

✓More than 50% of the traffic generated by Gnutella 0.4 is PING-PONG
related

‣ Scalability

✓Each query generates a huge amount of traffic

- e.g. TTL = 6; d = 10 ==> 106 messages

✓Potentially, each query is received multiple times from all neighbors

87

DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Conclusions

• Gnutella 0.6:

‣ Superpeer-based organisation

‣ Ping/pong caching

‣ Query routing

• Summary:

‣ A milestone in P2P computing

✓Gnutella proved that full decentralization is possible

‣ But:

‣ Gnutella is a patchwork of hacks

‣ The ping-pong mechanism, even with caching, is just plain inefficient

88

