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From the First Lecture (Architectural Models)...
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• The architecture of a system is its structure in terms of separately specified 
components and their interrelationships


• 4 fundamental building blocks (and 4 key questions):


‣ Communicating entities: what are the entities that are communicating in 
the distributed system? 

‣ Communication paradigms: how do these entities communicate, or, 
more specifically, what communication paradigm is used? 

‣ Roles and responsibilities: what (potentially changing) roles and 
responsibilities do these entities have in the overall architecture? 

‣ Placement: how are these entities mapped on to the physical distributed 
infrastructure (i.e., what is their placement)?
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To Avoid Any Misunderstanding…
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Introduction
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• Peer-to-peer (P2P) systems have become extremely popular and contribute 
to vast amounts of Internet traffic


• P2P basic definition: 

A P2P system is a distributed collection of peer nodes, that act both as 
servers and as clients 
‣ provide services to other peers

‣ consume services from other peers


• Very different from the client-server model!!



DTU Compute
Department of Applied Mathematics and Computer Science

It's a Broad Area…
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• P2P file sharing

‣ Gnutella

‣ eMule

‣ BitTorrent

• P2P communication

‣ Instant messaging

‣ Voice-over-IP: Skype

• P2P computation

‣ Seti@home

• DHTs & their apps

‣ Chord, CAN, Kademlia, …

• P2P wireless

‣ Ad-hoc networking
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P2P History: 1969 - 1990
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• The origins:


‣ In the beginning, all nodes in Arpanet/Internet were peers


‣ Each node was capable of:


✓ Performing routing (locate machines)


✓ Accepting ftp connections (file sharing)


✓ Accepting telnet connections (distribution computation)
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P2P History: 1999 - Today
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• The advent of Napster:

‣ Jan 1999: the first version of Napster was released by Shawn Fanning, 

student at the Northeastern University

‣ July 1999: Napster Inc. founded

‣ Feb 2001: Napster closed down


• After Napster:

‣ Gnutella, KaZaa, BitTorrent, …

‣ Skype

‣ Content creation in Wikipedia

‣ Open-source software development

‣ Crowd-sourcing

‣ …
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Napster
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Client/Server vs. Peer-to-Peer
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Example – Video Sharing (YouTube vs BitTorrent)

10



DTU Compute
Department of Applied Mathematics and Computer Science

Example – Video Sharing (YouTube vs BitTorrent)
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P2P vs Client-Server
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P2P Environment

• Dynamic


‣ Nodes may disconnect temporarily


‣ New nodes are continuously joining the system, while others leave 
permanently


• Security


‣ P2P clients runs on machines under the total control of their owners


‣ Malicious users may try to bring down the system


• Selfishness


‣ Users may run hacked clients in order to avoid contributing resources

13
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Why P2P?

• Decentralisation enables deployment of applications that are:


‣ Highly available


‣ Fault-tolerant


‣ Self-organizing


‣ Scalable


‣ Difficult or impossible to shut down


• This results in a “democratisation” of the Internet

14
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P2P and Overlay Networks

• Peer-to-Peer networks are usually “overlays”


• Logical structures built on top of a physical routed communication 
infrastructure (IP) that creates the allusion of a completely-connected graph

15

An overlay network is a virtual network of nodes and logical links that 
is built on top of an existing network with the purpose to implement a 
network service that is not available in the existing network
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Overlay Networks
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Overlay Network: links based on logical relationships 
(“knows”) rather than physical connectivity
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Overlay Networks
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Physical network: “who has a communication link to whom”
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Overlay Networks
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Logical network: “who can communicate with whom”
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Overlay Networks
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Overlay network (ring): “who knows whom”
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Overlay Network
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Overlay network (tree): “who knows whom”
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Overlay Networks

• Virtual edge


‣ TCP connection


‣ or simply a pointer to an IP address


• Overlay maintenance


‣ Periodically ping to make sure neighbour is still alive


‣ Or verify liveness while messaging


‣ If neighbour goes down, may want to establish new edge

21
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Overlay Networks

• Tremendous design flexibility


‣ Topology


‣ Message types


‣ Protocols


‣ Messaging over TCP or UDP


• Underlying physical net is transparent

to developer

22
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P2P Problems

• Overlay construction and maintenance


‣ e.g., random, two-level, ring, etc.


• Data location


‣ locate a given data object among a large number of nodes


• Data dissemination


‣ propagate data in an efficient and robust manner


• Per-node state


‣ keep the amount of state per node small


• Tolerance to churn (dynamic system)


‣ maintain system invariants (e.g., topology, data location, data availability) 
despite node arrivals and departures

23
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P2P Topologies
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Overlay Topologies
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Evaluating Topologies

• Manageability


‣ How hard is it to keep working? 

• Information coherence


‣ How reliable is info? 

• Extensibility


‣ How easy is it to grow? 

• Fault tolerance


‣ How well can it handle failures? 

• Censorship


‣ How hard is it to shut down?

26
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Evaluating Topologies: Centralized

• Manageable (how hard is it to keep working?)


‣ System is all in one place


• Coherent (how reliable is info?)


‣ Information is centralized


• Extensible (how easy is it to grow?)


‣ No


• Fault tolerance (how well can it handle failures?)


‣ Single point of failure


• Censorship (how hard is it to shut down?)


‣ Easy to shut down
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Evaluating Topologies: Hierarchical

• Manageable (how hard is it to keep working?)


‣ Chain of authority


• Coherent (how reliable is info?)


‣ Cache consistency


• Extensible (how easy is it to grow?)


‣ Add more leaves, rebalance


• Fault tolerance (how well can it handle failures?)


‣ Root is vulnerable


• Censorship (how hard is it to shut down?)


‣ Just shut down the root
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Evaluating Topologies: Decentralized

• Manageable (how hard is it to keep working?)


‣ Difficult, many owners


• Coherent (how reliable is info?)


‣ Difficult, unreliable peers


• Extensible (how easy is it to grow?)


‣ Anyone can join in


• Fault tolerance (how well can it handle failures?)


‣ Redundancy


• Censorship (how hard is it to shut down?)


‣ Difficult to shut down
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Evaluating Topologies: Centralized + Decentralized

• Manageable (how hard is it to keep working?)


‣ Same as decentralized


• Coherent (how reliable is info?)


‣ Better than decentralized


• Extensible (how easy is it to grow?)


‣ Anyone can join in


• Fault tolerance (how well can it handle failures?)


‣ Redundancy


• Censorship (how hard is it to shut down?)


‣ Difficult to shut down

30
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Searching VS Addressing

• Two basic ways to find objects: 


‣ Search for them 


‣ Address them using their unique name 


• Difference between searching and addressing is fundamental 


‣ Determines how network is constructed 


‣ Determines how objects are placed 


‣ Determines efficiency of object location

31



DTU Compute
Department of Applied Mathematics and Computer Science

Searching VS Addressing

• “Addressing” networks: find objects by addressing them with their unique 
name (cf. URLs in Web)


• “Searching” networks: find objects by searching with keywords that match 
objects’s description (cf. Google) 

32
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Unstructured VS Structured P2P Networks

• Unstructured networks


‣ Based on searching


‣ Unstructured does NOT mean complete lack of structure 


‣ Network has structure, but peers are free to join anywhere and objects can 
be stored anywhere


• Structured networks 


‣ Based on addressing


‣ Network structure determines where peers belong in the network and where 
objects are stored

33
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Some Common Topologies

• Flat unstructured: a node can connect to any other node


‣ only constraint: maximum degree dmax


‣ fast join procedure


‣ good for data dissemination, bad for location


• Two-level unstructured: nodes connect to a superpeer


‣ superpeer form a small overlay


‣ used for indexing and forwarding


‣ high load on superpeer


• Flat structured: constraints based on node ids


‣ allows for efficient data location


‣ constraints require long join and leave procedures

34
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Data Location (Lookup)

1. Introduction

A. Peer-to-Peer vs. Client/Server

B. Overlay Networks


2. Common Topologies

3. Data location

4. Gnutella Protocol



DTU Compute
Department of Applied Mathematics and Computer Science

Lookup Problem

• Node A wants to store a data item D

• Node B wants to retrieve D without prior knowledge of D’s current location 


How should the distributed system, especially data placement and retrieval, 
be organized (in particular, with regard to scalability and efficiency)?

36
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Strategies to Store and Retrieve Data

• Central servers


• Flooding


• Distributed indexing (Distributed Hash Tables)


• Superpeers


• Loosely structured overlays

37
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Big O Notation

• Big O notation is widely used by computer scientists to concisely describe 
the behavior of algorithms


• Specifically describes the worst-case scenario, and can be used to describe 
the execution time required or the space used by an algorithm


• Common types of orders


‣ O(1) – constant


‣ O(log n) – logarithmic


‣ O(n) – linear


‣ O(n2) – quadratic

38
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Central Server

(1) Node A publishes its content on the central server S

(2) Some node B requests the actual location of a data item D from the central 

server S 

(3) If existing, S replies with the actual location of D

(4) The requesting node B transmits the content directly from node A

39
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Central Server: Pros and Cons

• Approach of first generation Peer-to-Peer systems, such as Napster


• Advantages 

‣ search complexity of O(1) – the requester just has to know the central server 


‣ fuzzy and complex queries possible, since the server has a global overview 
of all available content


• Disadvantages 

‣ The central server is a critical element concerning scalability and availability 


‣ Since all location information is stored on a single machine, the complexity 
in terms of memory consumption is O(N), with N representing the number of 
items available in the distributed system


‣ The server also represents a single point of failure and attack

40
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Strategies to Store and Retrieve Data

• Central servers


• Flooding


• Distributed indexing (Distributed Hash Tables)


• Superpeers


• Loosely structured overlays
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Flooding Search

• Approach of the so-called second generation of Peer-to-Peer systems [first 
Gnutella protocol]


• Key idea: no explicit information about the location of data items in other 
nodes, other than the nodes actually storing the content


‣ No additional information concerning where to find a specific item in the 
distributed system


‣ Thus, to retrieve an item D the only chance is to ask (broadcast) as much 
participating nodes as necessary, whether or not they presently have item D


‣ If a node receives a query, it floods this message to other nodes until a 
certain hop count (Time to Live – TTL) is exceeded

42
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Flooding Search - Idea

• No routing information is maintained in intermediate nodes 

(1) Node B sends a request for item D to its “neighbours”, who forward the 

request to further nodes in a recursive manner (flooding/breadth-first 
search)


(2) Nodes storing D send an answer to B; D is then transmitted directly from 
the answering node(s)

43
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[Flooding] Search Horizon

• Search results are not guaranteed: flooding stopped by TTL, which produces 
search horizon

44

Objects that lie outside of the horizon are not found
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Flooding: Pros and Cons

• Advantages:

✓simplicity

✓no topology constraints

✓storage cost is O(1) because data is only stored in the nodes actually 

providing the data – whereby multiple sources are possible – and no 
information for a faster retrieval of data items is kept in intermediate nodes


• Disadvantages:

✓broadcast mechanism that does not scale well

✓high network overhead (huge traffic generated by each search request)

✓complexity of looking up and retrieving a data item is O(N2) 

✓search results are not guaranteed: flooding stopped by Time-To-Live

✓only applicable to small number of nodes

45
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Why System Design is Important…

After the central server of Napster was shut down in 
July 2001 due to a court decision, 


an enormous number of Napster users migrated to the 
Gnutella network within a few days 


—> under this heavy network load the system 
collapsed

46
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Strategies to Store and Retrieve Data

• Central servers


• Flooding


• Distributed indexing (Distributed Hash Tables)


• Superpeers


• Loosely structured overlays
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Distributed Indexing – Distributed Hash Tables

• Both central servers and flooding-based searching exhibit crucial bottlenecks 
that contradict the targeted scalability and efficiency of P2P systems


• Desired scalability: search and storage complexity O(log n), even if the 
system grows by some orders of magnitude

48
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Recall: Hash Tables

• Hash tables are a well-known data structure


• Hash tables allow insertions, deletions, and finds in constant (average) time


• Hash table is a fixed-size array 


‣ Elements of array also called hash buckets


• Hash function maps keys to elements in the array


• Properties of good hash functions: 


‣ Fast to compute


‣ Good distribution of keys into hash table 


‣ Example: SHA-1 algorithm

49
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Hash Tables: Example

• Hash function maps keys to elements in the array

50

• Hash function: hash(k) = k mod 10 


• Insert keys 0, 1, 4, 9, 16, and 25 


• Easy to find if a given key is present 
in the table 



DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Hash Table: Idea

• Hash tables are fast for lookups (O(1))


• Idea: distribute hash buckets to nodes 


• Nodes form an overlay network 


‣ Route messages in overlay to find responsible 
node


‣ Routing scheme in the overlay network is the 
difference between different DHTs


• Result is Distributed Hash Table (DHT) 

51
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Distributed Indexing – Distributed Hash Tables

• A P2P algorithm that offers an associative Map interface:

‣ put(Key k; Value v): associate a value/item v to the key k

‣ Value get(Key k): returns the value associated to key k


• Distributed Hash Tables: map keys to nodes

• Organization:

‣ Each node is responsible for a portion of the key space

‣ Messages are routed between nodes to reach responsible nodes

‣ Replication used to tolerate failures

52
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Route Puts/Gets Through the Overlay

53
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DHT Implementations

• The founders (2001):


‣ Chord, CAN, Pastry, Tapestry


• The ones which are actually used:


‣ Kademlia and its derivatives (up to 4M nodes!)

✓BitTorrent, Kad (eMule), The Storm Botnet


‣ Cassandra DHT

✓Part of Apache Cassandra

✓Initially developed at Facebook


• The ones which are actually used, but we don't know much about:


‣ Microsoft DHT based on Pastry


‣ Amazon's Dynamo key-value store

54
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Step 1: From Keys and Nodes to IDs

• Keys and nodes are represented by identifiers taken from the same ID space


‣ Key identifiers: computed through an hash function (e.g., SHA-1)


e.g., ID(k) = SHA1(k)


‣ Node identifiers: randomly assigned or computed through an hash function


e.g., ID(n) = SHA1(IP address of n)


• Why?


‣ Very low probability that two nodes have exactly the same ID


‣ Nodes and keys are mapped in the same space

55
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Step 2: Partition the ID Space

• Each node in the DHT stores some k, v pairs.


• Partition the ID space in zones, depending on the node IDs:


‣ a pair (k, v) is stored at the node n such that (examples):


✓its identifier ID(n) is the closest to ID(k);


✓its identifier ID(n) is the largest node id smaller than ID(k)

56

Keys are assigned to their successor node
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Step 3: Build Overlay Network

• Each DHT node manages a O(log n) references to other nodes, where n is the 
number of nodes in the system


• Each node has two sets of neighbors:

‣ Immediate neighbors in the key space (leafs)

✓Guarantee correctness, avoid partitions

✓But with only them, linear routing time


‣ Long-range neighbours

✓Allow sub-linear routing

✓But with only them, connectivity problems

57
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Step 4: Route Puts/Gets Through the Overlay

• Recursive routing: the initiator starts the process, contacted nodes forward 
the message


• Iterative routing: the initiator personally contact the nodes at each routing 
step

58
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Routing Around Failures (1)

• Under churn, neighbors may have failed


• To detect failures, acknowledge each hop (recursive routing)

59
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Routing Around Failures (2)

• If we don't receive ack or response, resend through a different neighbor

60
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Routing Around Failures (3)

• Must compute timeouts carefully


‣ If too long, increase put/get latency


‣ If too short, get message explosion


• Parallel sending could be a design decision (see Kademlia)

61
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Computing Good Timeouts

• Use TCP-style timers


‣ Keep past history of latencies


‣ Use this to compute timeouts for new requests


• Works fine for recursive lookups


‣ Only talk to neighbors, so history small, current


• In iterative lookups, source directs entire lookup


‣ Must potentially have good timeout for any node

62
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Recovering from Failures

• Can't route around failures forever


‣ Will eventually run out of neighbors


• Must also find new nodes as they join


‣ Especially important if they're our immediate predecessors or successors

63
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Recovering from Failures

• Reactive recovery

‣ When a node stops sending acknowledgments, notify other neighbors of 

potential replacements

• Proactive recovery

‣ Periodically, each node sends its neighbor list to each of its neighbors

64
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DHT: Pros and Cons
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• Advantages:

‣ completely decentralized (no need for superpeers)

‣ routing algorithm achieves low hop count (O(log n))

‣ storage cost per node: O(log n)

‣ if a data item is stored in the system, the DHT guarantees that the data is 

found

• Disadvantages:

‣ objects are tracked by unreliable nodes (which may disconnect)

‣ keyword-based searches are more difficult to implement than with 

superpeers (because objects are located by their objectid)

‣ the overlay must be structured according to a given topology in order to 

achieve a low hop count

‣ routing tables must be updated every time a node joins or leaves the 

overlay
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Comparison of Basic Lookup Concepts
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Strategies to Store and Retrieve Data

• Central servers


• Flooding


• Distributed indexing (Distributed Hash Tables)


• Superpeers


• Loosely structured overlays

67
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Superpeers

• Two-level overlay: use superpeers to track the locations of an object 
[Gnutella 2, BitTorrent]


‣ Each node connects to a superpeer and advertises the list of objects it 
stores


‣ Search requests are sent to the supernode, which forwards them to other 
super nodes


‣ Advantages: highly scalable


‣ Disadvantages:


✓superpeers must be reliable, powerful and well connected to the Internet 
(expensive)


✓superpeers must maintain large state


✓the system relies on a small number of superpeers

68
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Superpeers Example

• A two-level overlay is a partially centralized system


• In some systems, superpeers may be disconnected (e.g., BitTorrent)

69
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Strategies to Store and Retrieve Data

• Central servers


• Flooding


• Distributed indexing (Distributed Hash Tables)


• Superpeers


• Loosely structured overlays
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Loosely Structured Overlays

• Loosely structured networks: use hints for the location of objects [Freenet]


‣ Nodes locate objects by sending search requests containing the objectId 

‣ Requests are propagated using a technique similar to flooding


‣ Objects with similar identifiers are grouped on the same nodes

71
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Loosely Structured Overlays (cont.)

• A search response leaves routing hints on the path back to the source


• Hints are used when propagating future requests for similar object ids
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Loosely Structured Overlays: Pros and Cons

• Advantages:


‣ no topology constraints, flat architecture


‣ searches are more efficient than with plain flooding


• Disadvantages:


‣ does not support keyword-based searches


‣ search requests have a TTL


‣ do not guarantee a low number of hops, nor that the object will be found
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Data Location - Classification

74

• Classification of some (well known) P2P middleware according to structure 
and decentralisation
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Gnutella Protocol
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Gnutella: Brief History

• Nullsoft (a subsidiary of AOL) released Gnutella on March 14th, 2000, 
announcing it on Slashdot


• AOL removed Gnutella from Nullsoft servers on March 15th, 2000


• After a few days, the Gnutella protocol was reverse-engineered


• Napster was shutdown in early 2001, spurring the popularity of Gnutella


• On October 2010, LimeWire (a popular client) was shutdown by court's order

76



DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella

• Gnutella is a protocol for peer-to-peer search, consisting of:


‣ A set of message formats


✓5 basic message types


‣ A set of rules governing the exchange of messages


✓Broadcast


✓Back-propagate


✓Handshaking


‣ An hostcache for node bootstrap

77
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Gnutella Topology: Unstructured
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Gnutella Routing
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Gnutella Routing

80



DTU Compute
Department of Applied Mathematics and Computer Science

Gnutella Routing

81
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Gnutella Routing

82
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Gnutella Messages

• Each message is composed of:


‣ A 16-byte ID field uniquely identifying the message

✓randomly generated

✓not related to the address of the requester (anonymity)

✓used to detect duplicates and route back-propagate messages


‣ A message type field

✓PING, PONG

✓QUERY, QUERYHIT

✓PUSH(for rewalls)


‣ A Time-To-Live (TTL) Field


‣ Payload length

83
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Gnutella Messages

• PING (broadcast)

‣ Used to maintain information about the nodes currently in the network

‣ Originally, a “who's there" flooding message

‣ A peer receiving a ping is expected to respond with a pong message

84

• PONG (back-propagate)

‣ A pong message has the same ID of the corresponding ping message

‣ Contains:

✓address of connected Gnutella peer

✓total size and total number of files shared by this peer
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Gnutella Messages

• QUERY (broadcast)

‣ The primary mechanism for searching the distributed network

‣ Contains the query string

‣ A servent is expected to respond with a QUERYHIT message if a match is 

found against its local data set

85

• QUERYHIT (back-propagate)

‣ The response to a query

‣ Has the same ID of the corresponding query message

‣ Contains enough info to acquire the data matching the corresponding query

✓IP Address + port number

✓List of file names
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Flooding Search - Step by Step…

• Peers send msgs to neighbouring in the overlay network over pre-existing TCP connections

• The neighbours forward the Query msg to all of their neighbours, recursively

• When a peer receives a Query msg, it checks to see whether the keyword matches any of the 

files it is making available for sharing

86

• Once a match is found, it sends back a QueryHit msg, 
containing the name and size of the file


• The QueryHit msg follows the reverse path as the 
Query msg, using pre-existing TCP connections


• Multiple QueryHit messages may be received, in which 
case the user decides which file to download


• The Gnutella process then sets up a direct TCP 
connection with the desired user and sends a 
HTTPGET message that includes the specific file 
name


• The file is sent with a HTTP response message

• Once the entire file is received, the direct TCP 

connection is terminated
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Beyond the Original Gnutella

• Several problems in Gnutella 0.4 (the original one):


‣ PING-PONG traffic


✓More than 50% of the traffic generated by Gnutella 0.4 is PING-PONG 
related


‣ Scalability


✓Each query generates a huge amount of traffic


- e.g. TTL = 6; d = 10 ==> 106 messages


✓Potentially, each query is received multiple times from all neighbors
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Gnutella Conclusions

• Gnutella 0.6:


‣ Superpeer-based organisation


‣ Ping/pong caching


‣ Query routing


• Summary:


‣ A milestone in P2P computing


✓Gnutella proved that full decentralization is possible


‣ But:


‣ Gnutella is a patchwork of hacks


‣ The ping-pong mechanism, even with caching, is just plain inefficient
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