
Communication Paradigms
Nicola Dragoni
Embedded Systems Engineering
DTU Compute

1. Point-to-point Communication

• Characteristics of Interprocess Communication

• Sockets

• Client-Server Communication over UDP and TCP

2. Group (Multicast) Communication

3. Point-to-point Communication

• Remote Invocation

DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute
Department of Applied Mathematics and Computer Science

From the First Lecture (Architectural Models)...

2

• The architecture of a system is its structure in terms of separately specified
components and their interrelationships.

• 4 fundamental building blocks (and 4 key questions):

‣ Communicating entities: what are the entities that are communicating in
the distributed system?

‣ Communication paradigms: how do these entities communicate, or,
more specifically, what communication paradigm is used?

‣ Roles and responsibilities: what (potentially changing) roles and
responsibilities do these entities have in the overall architecture?

‣ Placement: how are these entities mapped on to the physical distributed
infrastructure (i.e., what is their placement)?

DTU Compute
Department of Applied Mathematics and Computer Science

direct communication

Communication Paradigms

3

• 3 types:

‣ interprocess communication

low level support for communication between processes in the distributed
system, including message-passing primitives, socket programming,
multicast communication

‣ remote invocation

most common communication paradigm, based on a two-way exchange
between communicating entities and resulting in the calling of a remote
operation (procedure or method)

‣ indirect communication

communication is indirect, through a third entity, allowing a strong degree
of decoupling between senders and receivers.

Examples: publish subscribe systems, distributed shared memory (DSM).

Unicast VS Multicast

4

DTU Compute
Department of Applied Mathematics and Computer Science

Point-to-point communication

Group (Multicast) Communication

The Characteristics of Interprocess Communication

• Message passing between a pair of processes supported by two
communication operations: send and receive

• Defined in terms of destinations and messages

• In order for one process A to communicate with another process B:

‣ A sends a message (sequence of bytes) to a destination

‣ another process at the destination (B) receives the message

• This activity involves the communication of data from the sending process to
the receiving process and may involve the synchronization of the two
processes

5

DTU Compute
Department of Applied Mathematics and Computer Science

Sending VS Receiving

• A queue is associated with each message destination

• Sending processes cause messages to be added to remote queues

• Receiving processes remove messages from local queues

6

DTU Compute
Department of Applied Mathematics and Computer Science

Communication between the sending
and receiving process may be either
synchronous or asynchronous

Synchronous Communication

• The sending and receiving processes synchronize at every message

• In this case, both send and receive are blocking operations:

‣ whenever a send is issued the sending process is blocked until the
corresponding receive is issued

‣ whenever a receive is issued the receiving process blocks until a message
arrives

7

DTU Compute
Department of Applied Mathematics and Computer Science

Asynchronous Communication

• The send operation is non-blocking:

‣ the sending process is allowed to proceed as soon as the message has
been copied to a local buffer

‣ the transmission of the message proceeds in parallel with the sending
process

8

DTU Compute
Department of Applied Mathematics and Computer Science

• The receive operation can have blocking and non-blocking variants:

‣ [non-blocking] the receiving process proceeds with its program after
issuing a receive operation

‣ [blocking] receiving process blocks until a message arrives

Message Destinations?

• Usually take the form (address, local port)

‣ For instance, in the Internet protocols messages are sent to (Internet
address, local port) pairs

• Local port: message destination within a computer, specified as an integer.
It is commonly used to identify a specific service (ftp, ssh, ...)

• A port has exactly one receiver but can have many senders

• Processes may use multiple ports from which to receive messages

• Any process that knows the number of a port can send a message to it

• Servers generally publicise their port numbers for use by clients

9

DTU Compute
Department of Applied Mathematics and Computer Science

Socket Abstraction

• At the programming level, message destinations can usually be defined by
means of the concept of socket

• A socket is an abstraction which provides an endpoint for communication
between processes

• A socket address is the combination of an IP address (the location of the
computer) and a port (a specific service) into a single identity

• Interprocess communication consists of transmitting a message between a
socket in one process and a socket in another process

10

DTU Compute
Department of Applied Mathematics and Computer Science

Sockets and Ports

• Messages sent to a particular Internet address and port number can be received only
by a process whose socket is associated with that Internet address and port number

11

DTU Compute
Department of Applied Mathematics and Computer Science

• Processes may use the same socket for sending and receiving messages

• Any process may make use of multiple ports to receive messages, BUT a process
cannot share ports with other processes on the same computer

• Each socket is associated with a particular protocol, either UDP or TCP

UDP vs TCP in a Nutshell

12

DTU Compute
Department of Applied Mathematics and Computer Science

• TCP (Transport Control Protocol) and
UDP (User Datagram Protocol) are
two transport protocols

• TCP is a reliable, connection-
oriented protocol

• UDP is a connectionless protocol
that does not guarantee reliable
transmission

Internet protocol layers

UDP Datagram Communication

• A datagram is an independent, self-contained message sent over the network
whose arrival, arrival time, and content are not guaranteed

• A datagram sent by UDP is transmitted from a sending process to a receiving
process without acknowledgement or retries

• If a failure occurs, the message may not arrive

13

DTU Compute
Department of Applied Mathematics and Computer Science

• Use of UDP: for some applications, it is acceptable to use a service that is
liable to occasional omission failures

‣ DNS (Domain Name Service), which looks up DNS names in the Internet, is
implemented over UDP

‣ VOIP (Voice Over IP) also runs over UDP

Case Study: JAVA API for UDP Datagrams

DTU Compute
Department of Applied Mathematics and Computer Science

The Java API provides datagram communication by means
of two classes: DatagramPacket and DatagramSocket

DatagramPacket Class

15

• This class provides a constructor that makes an instance out of an array of bytes
comprising a message, the length of the message and the Internet address and local
port number of the destination socket

array of bytes containing message length of message Internet address port number

• Instances of DatagramPacket may be transmitted between processes when one
process sends it and another receives it

...
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, args[0].length(), aHost, serverPort);
...

DTU Compute
Department of Applied Mathematics and Computer Science

sender

DatagramPacket Class

16

DTU Compute
Department of Applied Mathematics and Computer Science

• The class provides another constructor for use when receiving a message

• Its arguments specify an array of bytes in which to receive the message and the length
of the array

• A message can be retrieved from DatagramPacket by means of the method getData

• The methods getPort and getAddress access the port and Internet address

...
byte[] buffer = new byte[1000];
DatagramPacket request = new DatagramPacket(buffer, buffer.length);
...

...
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
...

receiver

receiver

DatagramSocket Class

17

DTU Compute
Department of Applied Mathematics and Computer Science

aSocket = new DatagramSocket();

aSocket = new DatagramSocket(6789);

• This class supports sockets for sending and receiving UDP datagrams

• It provides a constructor that takes a port number as argument, for use by
processes that need to use a particular local port

• It also provides a no-argument constructor that allows the system to choose
a free local port

• Main methods of the class:

‣ send and receive: for transmitting datagrams between a pair of sockets

‣ setSoTimeout: to set a timeout (the receive method will block for the time

specified and then trow an InterruptedIOException)

Example: UDP Client Sends a Message to the Server and Gets a Reply

18

DTU Compute
Department of Applied Mathematics and Computer Science

args[0] is a message

args[1] is a DNS name of the server

message converted in array of bytes
IP address of the hosthow to send a

msessage

how to receive

a message

close the socket

Example: UDP Server Repeatedly Receives a Request and Sends it
Back to the Client

19

DTU Compute
Department of Applied Mathematics and Computer Science

socket bound to the server port 6789

receive the msg

sends back the same
message to the client

close the socket

End of the Case Study

DTU Compute
Department of Applied Mathematics and Computer Science

TCP Stream Communication

• TCP is a reliable, connection-oriented protocol.

• The API for stream communication assumes that when a pair of processes are
establishing a connection, one of them plays the client role and the other plays the
server role, but thereafter they could be peers

‣ The client role involves creating a stream socket bound to any port and then
making a connect request asking for a connection to a server at its server port

‣ The server role involves creating a listening socket bound to a server port and
waiting for clients to requests connections

‣ When the server accepts a connection, a new stream socket is created for the server
to communicate with a client, meanwhile retaining its socket at the server port for
listening for connect requests from other clients

21

DTU Compute
Department of Applied Mathematics and Computer Science

TCP Stream Communication

• In other words, the API of the TCP protocol provides the abstraction of a
stream of bytes to which data may be written and from which data may be
read

• The pair of sockets in client and server are connected by a pair of streams,
one in each direction

‣ Thus each socket has an input stream and an output stream

‣ A process A can send information to a process B by writing to A’s output
stream

‣ A process B obtains the information by reading from B’s input stream

22

DTU Compute
Department of Applied Mathematics and Computer Science

Use of TCP

• Many frequently used services run over TCP connections, with reserved port
numbers, such as:

‣ HTTP (HyperText Transfer Protocol, used for communication between web
browsers and web servers)

‣ FTP (File Transfer Protocol, it allows directories on a remote computer to
be browsed and files to be transferred from one computer to another over
a connection)

‣ Telnet (it provides access by means of a terminal session to a remote
computer)

‣ SMTP (Simple Mail Transfer Protocol, used to send email between
computers)

23

DTU Compute
Department of Applied Mathematics and Computer Science

Case Study: JAVA API for TCP streams

DTU Compute
Department of Applied Mathematics and Computer Science

The Java API provides TCP stream communication by means
of two classes: ServerSocket and Socket

ServerSocket Class

• Used by a server to create a socket at a server port for listening for connect
requests from clients

• Its accept method gets a connect request from the queue of messages, or if
the queue is empty, it blocks until one arrives

• The result of executing accept is an instance of the class Socket - a socket
for giving access to streams for communicating with the client

25

DTU Compute
Department of Applied Mathematics and Computer Science

receiver

Socket Class

• The client uses a constructor to create a socket, specifying the hostname and
port of a server.

• This constructor not only creates a socket associated with a local port but
also connects it to the specified remote computer and port number

• It can throw an UnkownHostException if the hostname is wrong or an
IOException if an IO error occurs

• The class provides methods getInputStream and getOutputStream for
accessing the two streams associated with a socket

26

DTU Compute
Department of Applied Mathematics and Computer Science

...
int serverPort = 7896;
s = new Socket(args[1], serverPort);
...

sender

Example: TCP Client Makes Connection to Server, Sends Request and
Receives Reply

27

DTU Compute
Department of Applied Mathematics and Computer Science

socket bound to hostname

and server port 7896input & output streams

send message & wait for
reply (write to output

stream & read from input
stream)

close the socket

Example: TCP Server Makes a Connection for Each Client and Then
Echoes the Client’s Request

28

DTU Compute
Department of Applied Mathematics and Computer Science

server socket
on port 7896

server listens for
connect requests

When a connect request arrives, server makes a new thread in which to
communicate with the client.

Example: TCP Server Makes a Connection for Each Client and Then
Echoes the Client’s Request

29

DTU Compute
Department of Applied Mathematics and Computer Science

socket’s input and
output streams

thread waits to read a msg and
writes it back

close the socket

End of the Case Study

DTU Compute
Department of Applied Mathematics and Computer Science

Closing a Socket

31

• When an application closes a socket: it will not write anymore data to its
output stream

‣ Any data in the output buffer is sent to the other end of the stream and out
in the queue at the destination socket with an indication that the stream is
broken

• When a process has closed its socket, it will no longer able to use its input
and output streams

• The process at the destination can read the data in its queue, but any further
reads after the queue is empty will result in an error/exception (for instance,
EOFException in Java)

• When a process exits or fails, all of its sockets are eventually closed

• Attempts to use a closed socket or to write to a broken stream results in an
error/exception (for instance, IOException in Java)

DTU Compute
Department of Applied Mathematics and Computer Science

Communication Paradigms

1. Point-to-point Communication

• Characteristics of Interprocess Communication

• Sockets

• Client-Server Communication over UDP and TCP

2. Group (Multicast) Communication

3. Point-to-point Communication

• Remote Invocation

DTU Compute
Department of Applied Mathematics and Computer Science

Multicast

• A multicast operation sends a single message from
one process to each of the members of a group of
processes, usually in such a way that the membership
of the group is transparent to the sender

• There is a range of possibilities in the desired
behaviour of a multicast

33

DTU Compute
Department of Applied Mathematics and Computer Science

• The simplest provides no guarantees about message delivery or ordering

(see lecture in week 12 on “Multicast Communication”)

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

1.Fault tolerance based on replicated services

‣ A replicated service consists of a group of members

‣ Client requests are multicast to all the members of the group, each of
which performs an identical operation

‣ Even when some of the members fail, clients can still be served

34

DTU Compute
Department of Applied Mathematics and Computer Science

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

2.Better performance through replicated data

‣ Data are replicated to increase the performance of a service - in some
cases replicas of the data are placed in users’ computers

‣ Each time the data changes, the new value is multicast to the processes
managing the replicas

35

DTU Compute
Department of Applied Mathematics and Computer Science

What Can Multicast Be Useful for?

• Multicast messages provides a useful infrastructure for constructing
distributed systems with the following characteristics:

3.Propagation of event notifications

‣ Multicast to a group may be used to notify processes when something
happens

‣ For example, a news system might notify interested users when a new
message has been posted on a particular newsgroup

36

DTU Compute
Department of Applied Mathematics and Computer Science

IP Multicast

• IP multicast is built on top of the Internet Protocol, IP

• Note that IP packets are addressed to computers (ports belong to the TCP
and UDP levels)

• IP multicast allows the sender to transmit a single IP packet to a set of
computers that form a multicast group

• The sender is unaware of the identities of the individual recipients and of the
size of the group

• A multicast group is specified by an Internet address whose first 4 bits are
1110 (in IPv4)

37

DTU Compute
Department of Applied Mathematics and Computer Science

28 bits

IP Multicast - Membership

• Being a member of a multicast group allows a computer to receive IP
packets sent to the group

• It is possible to send datagrams to a multicast group without being a member

• The membership of multicast groups is dynamic, allowing computers to join
or leave at any time and to join an arbitrary number of groups

38

DTU Compute
Department of Applied Mathematics and Computer Science

IP Multicast - IP Level

• At the IP level:

‣ A computer belongs to a multicast group when one or more of its
processes has sockets that belong to that group

‣ When a multicast message arrives at a device:

copies are forwarded to all of the local sockets that have joined the
specified multicast address and are bound to the specified port number

39

DTU Compute
Department of Applied Mathematics and Computer Science

IP Multicast - Programming Level

• At the application programming level, IP multicast is available only via UDP:

‣ An application program performs multicasts by sending UDP datagrams
with multicast addresses and ordinary port numbers

‣ An application program can join a multicast group by making its socket
join the group, enabling it to receive messages to the group

40

DTU Compute
Department of Applied Mathematics and Computer Science

Case Study: JAVA API for IP Multicast

DTU Compute
Department of Applied Mathematics and Computer Science

The Java API provides a datagram interface to IP multicast
through the class MulticastSocket

The Class MulticastSocket

• A subclass of DatagramSocket with the additional capability of being able to
join multicast groups

• It provides two alternative constructors, allowing sockets to be created to use
either a specified local port or any free local port

42

DTU Compute
Department of Applied Mathematics and Computer Science

...
MulticastSocket s =null;
s = new MulticastSocket(6789);
...

Joining a Group

• A process can join a group with a given multicast address by invoking the
joinGroup method of its multicast socket

‣ In this way, the socket joins a multicast group at a given port and it will
receive datagrams sent by processes on other computers to that group at
that port

43

DTU Compute
Department of Applied Mathematics and Computer Science

...
MulticastSocket s =null;
s = new MulticastSocket(6789);
InetAddress group = InetAddress.getByName(args[1]);
s.joinGroup(group);
...

Leaving a Group

• A process can leave a specified group by invoking the leaveGroup method of
its multicast socket

44

DTU Compute
Department of Applied Mathematics and Computer Science

...
MulticastSocket s =null;
InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
...
s.leaveGroup(group);

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

45

DTU Compute
Department of Applied Mathematics and Computer Science

args[0] = msg contents

args[1] = multicast address

MulticastSocket creation on
port 6789

sending a
DatagramPacket

message

joining a multicast
group

46

DTU Compute
Department of Applied Mathematics and Computer Science

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

peer attempts to receive 3 multicast
messages from its peers via its socket

• When several instances of this program are run simultaneously on different
computers, all of them join the same group and each of them should receive
its own message and the messages from that joined after it.

47

DTU Compute
Department of Applied Mathematics and Computer Science

Example:
Multicast Peer Joins a Group and Sends and Receives Datagrams

End of the Case Study

DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute
Department of Applied Mathematics and Computer Science

Communication Paradigms
Nicola Dragoni
Embedded Systems Engineering
DTU Compute

1. Point-to-point Communication

• Characteristics of Interprocess Communication

• Sockets

• Client-Server Communication over UDP and TCP

2. Group (Multicast) Communication

3. Point-to-point Communication

• Remote Invocation

- Remote Method Invocation (RMI)

- RMI Invocation Semantics

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Invocation

• RPC (Remote Procedure Call)

‣ the earliest programming model for distributed programming:

A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1), pp. 39-59, 1984

‣ allows client programs to call procedures in server programs running in
separate processes (and generally in different computers from the client)

50

• RMI (Remote Method Invocation)

‣ extension of local method invocation of object-oriented programming

‣ allows an object living in one process to invoke the methods of an object
living in another process. Most famous example: Java RMI

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Method Invocation (RMI)

DTU Compute
Department of Applied Mathematics and Computer Science

Let Us Start from Scratch: the Object Model (...in 2 slides...)

• An object-oriented program (Java, C++, ...) consists of a collection of
interacting objects, each of which consists of a set of data and a set of
methods

• An object can communicate with other objects by invoking their methods,
generally passing arguments and receiving results (request/reply protocol)

• Objects can encapsulate their data and the code of their methods

• Some languages (JAVA, C++) allow programmers to define objects whose
instance variables can be accessed directly

• BUT in a distributed object system, an object’s data should be
accessible only via its methods (or interface)

52

DTU Compute
Department of Applied Mathematics and Computer Science

Actions in the Object Model

• An action in an object-oriented program is initiated by an object invoking a
method in another object

• The receiving object executes the appropriate method and then returns
control to the invoking object, sometimes supplying a result

53

• An invocation of a method can have 3 possible effects:

‣ the state of the receiver may be changed

‣ a new object may be instantiated (i.e., by using a constructor in Java)

‣ further invocations on methods in other objects may take place

DTU Compute
Department of Applied Mathematics and Computer Science

How to extend
the “traditional” object model

to make it applicable to
distributed systems?

DTU Compute
Department of Applied Mathematics and Computer Science

The Distributed Object Model

• Each process contains a collection of objects

‣ some of which can receive both local and remote invocations

‣ whereas the other objects can receive only local invocations

55

• Method invocations between objects in different processes, whether in the
same computer or not, are known as remote method invocations

• Method invocations between objects in the same process are local method
invocations

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Objects

• Remote objects: objects that can receive remote invocations

56

• Fundamental concepts of the distributed object model:

‣ [Remote Object References] other objects can invoke the methods of a
remote object if they have access to its remote object reference

‣ [Remote Interfaces] every remote object has a remote interface that
specifies which of its methods can be invoked remotely

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Object Reference

• A remote object reference is an identifier that can be used throughout a
distributed system to refer to a particular unique remote object

• A remote object reference is passed in the invocation message to specify
which object is to be invoked

• Remote object references are analogous to local ones in that:

‣ the remote object to receive a remote method invocation is specified by
the invoker as a remote object reference

‣ remote object references may be passed as arguments and results of
remote method invocations

57

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Interface

58

The remote interface
specifies which methods
of an object can be
invoked remotely

The class of a remote object
implements the methods of its
remote interface

Objects in other processes can
invoke only the methods that
belong to the remote interface
of a remote object

Local objects can invoke the methods
in the remote interface as well as
other methods implemented by a
remote object

DTU Compute
Department of Applied Mathematics and Computer Science

Actions... in a Distributed Object System

• As in the non-distributed case: an action is initiated by a method invocation,
which may result in further invocations on methods in other objects

• BUT in the distributed case: the objects involved in a chain of related
invocations may be located in different processes or different devices

• When an invocation crosses the boundary of a process or computer, RMI is
used and the remote reference of the object must be available to the invoker

• Remote object references may be obtained as the results of remote method
invocations (example: A might obtain a remote reference to F from B)

59

DTU Compute
Department of Applied Mathematics and Computer Science

Creation of Remote Objects

• When an action leads to the instantiation of a new object, that new object
will normally live within the process where the instantiation is requested

60

• If a newly instantiated object has a remote interface, it will be a remote object
with a remote object reference

DTU Compute
Department of Applied Mathematics and Computer Science

Exceptions

• Any remote invocation may fail for reasons related to the invoked object being
in a different process or computer from the invoker

Example: the process containing the remote object may have crashed or may
be too busy to reply, or the invocation or result message may be lost

61

• Remote method invocation should be able to raise exceptions!

‣ Timeouts that are due to distribution

‣ Exceptions raised during the execution of the method invoked:

- attempt to read beyond the end of a file

- attempt to access a file without the correct permissions

- ...

DTU Compute
Department of Applied Mathematics and Computer Science

RMI Invocation Semantics

DTU Compute
Department of Applied Mathematics and Computer Science

Local Method Invocation Semantics

• Local method invocations are executed exactly once

exactly once invocation semantics = every method is executed exactly once

• This cannot always be the case for remote method invocation!

• Request-reply protocols, such as RMI, can be implemented in different ways
to provide different delivery guarantees

• These choices lead to a variety of possible semantics for the reliability of
remote invocations as seen by the invoker

63

DTU Compute
Department of Applied Mathematics and Computer Science

Main Design Choices for Implementing RMI

• Retry request message: whether to retransmit the request message until
either a reply is received or the server is assumed to have failed

64

Sender Receiver

request

deadlock!

Error control mechanisms:
timeout + retransmission of request msg

DTU Compute
Department of Applied Mathematics and Computer Science

Main Design Choices for Implementing RMI

• Duplicate filtering: when retransmissions are used, whether to filter out
duplicate requests at the server

65

Sender Receiver
request

duplication!

msg

timeout request
msg

reply

msg

Error control mechanisms:
numbering scheme

DTU Compute
Department of Applied Mathematics and Computer Science

Main Design Choices for Implementing RMI

• Retransmission of results: whether to keep a history of result messages to
enable lost results to be retransmitted without re-executing the operations at
the server

66

Sender Receiver
request

operation

timeout request

reply

msg

Error control mechanisms:
numbering scheme + history of result msgs

operation

DTU Compute
Department of Applied Mathematics and Computer Science

Main Design Choices for Implementing RMI

• Combination of these choices lead to a variety of possible semantics for the
reliability of remote invocations: Maybe, At-least-once, At-most-once

67

+/-?

Retry request message

Duplicate filtering

Retransmission of results

DTU Compute
Department of Applied Mathematics and Computer Science

RMI Invocation Semantics: Maybe

• The remote method may be executed once or not at all

• Maybe semantics arises when no fault tolerance measures are applied

• Useful only for applications in which occasional failed invocations are
acceptable

• This model can suffer from the following types of failure:

‣ omission failures if the invocation or result message is lost

‣ crash failures when the server containing the remote object fails

68

DTU Compute
Department of Applied Mathematics and Computer Science

RMI Invocation Semantics: At-Least-Once

• The invoker receives either

‣ a result, in which case the invoker knows that the method was executed at

least once, or

‣ an exception informing it that no result was received

• Can be achieved by the retrasmission of request messages, masking the
omission failures of the invocation or result message

• This model can suffer from the following types of failure:

‣ crash failures when the server containing the remote object fails

‣ arbitrary failures, in cases when the invocation message is retransmitted,

the remote object may receive it and execute the method more than once,
possibly causing wrong values to be stored or returned

69

DTU Compute
Department of Applied Mathematics and Computer Science

RMI Invocation Semantics: At-Most-Once

• The invoker receives either

‣ a result, in which case the invoker knows that the method was executed

exactly once, or

‣ an exception informing it that no result was received, in which case the

method will have been executed either once or not at all

• Can be achieved by using a combination of fault tolerance measures
(retransmission + duplicate filtering)

‣ The use of retries masks any omission failures of the invocation or result
messages

‣ Arbitrary failures are prevented by ensuring that for each RMI a method is
never executed more than once

70

DTU Compute
Department of Applied Mathematics and Computer Science

RMI Invocation Semantics Summary

• In Java RMI the invocation semantics is at-most-once

• In CORBA is at-most-once but maybe semantics can be requested for
methods that do not return results

71

DTU Compute
Department of Applied Mathematics and Computer Science

Remote Procedure Call (RPC)

DTU Compute
Department of Applied Mathematics and Computer Science

request

completes service returns

call service

RPC (... in one slide...)

• RPC (Remote Procedure Call): allows client programs to call procedures in
server programs running in separate processes and generally in different
computers from the client

73

CLIENT SERVER
call rpc() function

service

executes

execute request

return reply

DTU Compute
Department of Applied Mathematics and Computer Science

RPC vs RMI?

• A remote procedure call is very similar to a RMI in that a client program calls a
procedure in another program running in a server process

• Server may be clients of other servers to allow chains of RPCs

• A server process must define in its service interface the procedures that are
available for calling remotely

• RPC, like RMI, may be implemented to have one of the choices of invocation
semantics previously discussed (maybe, at-least-one, at-most-one)

74

