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1 Introduction
1.1 Problem Statement

Nowadays, more and more devices are connected to each other and always better ways to
improve and accelerate the common normal daily actions are provided to the consumers.
The rhythm of life is becoming more and more frenetic and people are less focused on
the normal simple actions.

People moved from cash to credit cards and now are moving to mobile payments.
Nowadays basically all kinds of payments can be performed by mobile phone, as An-
droid Pay, Apple Pay and Samsung Pay have already showed us. But in the case of a
gas station, what if the user could pay without even getting out of the car, simply by
indicating the amount of gas she wants?

Such an app could be run in every kind of satellite navigators: the only thing the
user should do is ask for the fuel and allow the payment. The satellite navigator will
then take care of paying the gas station and of storing the information of the transaction.
Storing such information could be helpful for the user to keep track of the cheapest gas
station and the weekly fuel consumption.

The system would also make the payments more secure and the process of paying
and storing the user operations more user-friendly since no user interaction is required.
Moreover, such an automatic system in the future could even become the starting point
of a revolution: a completely automatic refueling-system with no user interaction what-
soever.

This system should provide a secure way of payment that considers how the sensitive
data is stored, how it should be exchanged, the threats to the system and how to protect
the system from them. It should also be robust enough to ensure the proper functioning
even if the communication between the devices, or the devices themselves, fail. Finally,
the information of all the users is to be stored in a server to enhance the user’s experience.
It is also highly important that the system is scalable when considering the amount of
potential users.

As for security regarding payments, our system will include HCE (Host Card Emu-
lator) and tokenization. Nowadays, people usually pay with credit card in a gas station.
Encryption is used to protect the sensitive data so that only authorized users can read it,
but the best approach to protect the data is to remove it. With tokenization the user’s
bank account information is neither stored in the device nor sent. Instead, a token is
generated in the cloud and used. This is more secure as it limits the consequences in
case an attacker steals the token or gains access to the device.
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1.2. Structure of the report

1.2 Structure of the report

Figure 1.1: Overview of the system.

An overview of the gas station system can be seen in figure 1.1. When the car ap-
proaches the pump (the black ellipse in the figure), the satellite navigator will receive
the information that is being broadcast. Then it will reply with the same ID and the
amount of money to refuel and the communication will start. Thanks to a limitation of
the operating field of our routers, we assume that one car cannot receive two different
IDs corresponding to two pumps due to the small working distance.

In this report will analyze how the communication between the car and the gas
station, as well as with the cloud, should happen in order to build a system that is
secure, fault-tolerant and scalable, and how this information should be stored. Security
is undoubtedly of foremost importance in this system due to the sensitive information
involved. However, addressing this vast topic in a mobile payment system is a huge
problem that exceeds the scope of the project. Therefore, the focus has been mainly
on the HCE implementation as well as on the threat assessment. The system has been
analysed from a high-level perspective and some solutions have been provided for the
threats identified.

Enrico Cimitan will work on making the system fault-tolerant. Cristina Garćıa
Garćıa will be responsible for dealing with the scalability issues. Piergiacomo De Marchi
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1.2. Structure of the report

and Andrea Dittadi will focus on the problem of how to exchange the information in
a secure way between the device, the gas station and the cloud as well as the secure
storage of the sensible information.

First, an overview of the system is introduced in chapter 2. Chapter 3 deals with
the problem of how to make it fault-tolerant. Chapter 4 addresses the scalability issues.
Finally, Chapter 5 will explain in detail the security aspects of the system, and in
Chapter 6 we will mention other issues of our system that we did not address.
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2 Gas payment
2.1 Overview

The Internet of Things (IoT) has come to make people’s life easier, smarter and more
efficient. Forecasts show that 50 billion devices will be connected by 2020 and also 90%
of cars. We can benefit from this and allow the user to perform the payment without
leaving the car, while at the same time making the system more secure without needing
the user to worry about it.

Figure 2.1: Visa pay flow for a card transaction.

Nowadays, to perform a card transaction the details of the card have to be sent
through different entities in order to perform all the controls and verifications, as shown
in figure 2.1 (image from [4]). Although this sensitive data is encrypted, security breaches
may occur and this information can be exposed. Also, if someone has access to the key
used for the encryption, she can also obtain the information. Tokenization is a process
that replaces this sensitive data for non-sensitive place-holders to reduce the potential
data exposure and only access the original value when strictly necessary.
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2.1. Overview

The system will also provide another additional service for the user: it will allow her
to track the fuel consumption. Each time the user visits a gas station, the data will be
recorded in a server. Storing this information will allow the user to consult which are
the cheapest gas stations as well as managing the fuel consumption. The Host Card
Emulator (HCE) technology can be used along with tokenization to achieve this service.
An overview of the proposed system can be seen in figure 2.2.

Figure 2.2: Gas payment from the car using tokenization
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2.3. Assumptions

Note that only the involved parties in the payment process are shown. Our system
also consists of an app that can keep track of the fuel consumption, providing useful
information for the user such as the cheapest gas stations, as mentioned above. The
information exchange between the app and the server can be done by using standard
protocols such as HTTPS and therefore it is not shown in the flowchart.

2.2 Distributed architecture

Our system consists of many different parts, as shown in the figure 2.2. The car repres-
ents the user of our system, that is the customer of the gas station. It interacts with
the first and outermost entity of our system, that is the access point located at the
pump. This access point immediately forwards any message to the gas station, that is
the central entity of our system. The gas station communicates then with the physical
pump and the application server, that are other two internal entities of our system; the
first has the purpose of dispensing fuel, the second one of recording the purchases of a
customer in order to create a history accessible by the user. The other entities acting in
the system are external entities, mainly connected to the payment process, that are not
directly managed by our system, but whose channel must be taken in consideration in
our discussion.

The interaction between the single entities will be discussed in depth later, but we
want to give a general idea of how we have conceived the communication between them.
We will identify the entity with the processes they run, in a system perspective, but in
general we will use the same name to indicate the hardware associated with them.

car↔router: these two entities are strongly correlated by the fact that they need to be
very near.

router↔station & station↔physical pump: in our idea these entities are closer to
each other: we will not take this as an assumption, allowing a gas pump to rely on
a far station. This could carry latency problems.

station↔application server: this communication is physically decoupled, and we al-
low the two entities to be far from each other.

Due to the sensible nature of the setting (handling payments and giving a primary
importance to the user experience), our system is going to be a synchronous distributed
system. This means that each operation will have a time bound to be executed, and the
channels are supposed to have a limited amount of introduced delay.

2.3 Assumptions

Some assumptions have been done for the design of the system:
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2.3. Assumptions

• The car has a satellite navigator connected to the Internet and that it is capable
of authenticating the user as well as performing the rest of operations needed to
communicate with the different servers. This assumption is reasonable given the
large amount of connected cars nowadays.

• The communication between banks as well as the operations that have to be per-
formed are assumed to be already implemented by them and no faults in that part
of the system are considered.

• There are only few pumps per gas station. This seems as a fair assumption, as
nowadays there are not gas stations with dozens of pumps.

• A physical pump may fail, but it cannot deceive about the amount of fuel given to
the user. In other words, the receipt send to the user at the end of the operation
reflect the exact amount of fuel that she has received.
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3 Fault Tolerance
Any distributed system relies on the communication between a number of devices. If one
of these communications fails (either because of the channel or because of a component),
the system should be robust enough to keep working correctly. In the case of our system,
a money loss of the customer could be the effect of such a crash; therefore fault tolerance
gains a primary importance in this setting.

In the following chapter we will address such problems one by one, refining and
improving our previous design and protocols, until we reach a satisfying level of reliab-
ility for our complete system. We will proceed in a bottom-up fashion, addressing the
problems in a smaller scope (i.e. the single pump) and then expanding up to the whole
system architecture.

Note that in the following we will assume that the bank systems and channels will
not fail; in an implementation of the system, this is a reasonable assumption, since our
protocol could not work without the bank servers being reachable and active. In fact
the only thing we could do is make sure that we have a at-most-once communication,
and just become unable to offer the service if the bank stops responding.

3.1 Router access points

The first problem that we have to address is the communication between the car of the
customer and the receiving router that is associated with each pump. The interaction
between the two parties starts with the pump router broadcasting a low-range message
containing its ID, and the car moving in the range to receive this message. It may happen
that the router has crashed, and a car approaches the corresponding pump expecting
the interaction to start; and therefore, waiting forever (or, until the customer gets tired
of waiting). We could think of many ways of tackling this “omission failure”; the two
main ways that do not involve a sensible modification in our overall design are:

• Use more than one router per pump: This approach guarantees that, in case
one of the routers of a pump is no longer reachable, the other one can connect
to the car and initialize the communication. This approach, however, has some
important drawbacks. It causes the car to receive messages from different routers
regarding the same pump from which the car has to choose one; this can in principle
cause a security problem (because of someone faking to be a router). It can also
cause two different vehicles to connect to two access points of the same pump; this
would require a mutual exclusion access to the pump administration by the two
routers. We can implement such a protocol, but risking more delay in the overall
execution, that is something we do not want the customer to experience.
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3.2. The physical pump

• Monitor and tolerate failure: An alternative approach is to keep the system
lightweight, avoiding to add more devices that manage the same pump. Keeping
only one router per pump implies that if a router fails its pump is no longer usable
by a customer. Since we assume that the station has more than one pump, the
failure of one of them is an event that we can tolerate, as long as we have a way to
prevent users from trying to access it. This result can be achieved by implementing
a broadcast service in the server, that periodically asks each router for its state.
If the router does not answer within a certain timeout, than the server flags it as
not working, and shows an error message in the display of the pump. (Notice that
we are assuming here that a router’s capability of broadcasting its ID fails if and
only if its capability of answering to the server fails, coherently with our view of
the entities as processes)

Because of the reasons explained above, we are going to privilege the second solution.
Our system can survive the loss of a pump with a non drastic impact on the user, as long
as we notify him of the failure, for example with a message on the display of the pump
or with a screen at the entrance of the station that reports the event of a malfunctioning
pump. However, we have to be aware that in case of a big number of pumps the messages
to verify the aliveness of the access points could be a significant amount; based on the
assumptions for our system, though, we can deduce that the amount of pumps will never
be so big to cause such a decrease in the system performance.

Figure 3.1: The basic protocol to check if an access point is reachable.

3.2 The physical pump

The physical pump is another atomic part of our system that is crucial in the interaction
with the customer. It is run by a very simple protocol that is responsible of regulating the
distribution of fuel according to a message from the server, and to answer this message
with an acknowledgement. We have to consider two different cases of failure of the
physical pump: the complete failure or the impossibility to complete the fuel delivery.
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3.3. The station server

If the pump stops working when no customer is being served, then our system should
behave as in the case of the access points: notifying the customer in advance that the
pump is out of order, and preventing the fuel to be ordered from that pump. This
requires, similarly to the previous section, that the system knows whether the pump
has crashed. The liveness of the access points was checked by broadcasting a control
message; we can either follow the same approach, and keep flooding the network with
“ping messages”, or delaying the control at payment time.

In this case we choose the second approach. In the previous section the commu-
nication was started by the router, so the server had to take the initiative to have
confirmation of functionality. Here the server is the entity that starts the communica-
tion (thus acting as a client for the pump), therefore it can just check the availability of
the pump whenever it is needed. This allows us to save a lot of messages sent, paying
as a price the fact that the first customer after the failure will not be aware of it before
reaching the pump (because the server has not identified the failure yet).

We have then to handle the case in which the pump is not able to deliver the fuel.
This includes the case of the fuel supply ending, the case of the pump failure occurring
immediately having confirmed its liveness to the server, and the failure occurring during
the fuel dispensing. To handle this case, it’s sufficient to have a timeout for the server
waiting for a response from the pump. In case the timeout expires, the server deduces
that the pump is no longer working, and can issue a refund ticket for the undispensed
amount (if the pump sends periodical status updates), or for the whole payment.

Note that we are not handling the case of a wrong amount of fuel dispensed without
the pump being aware of it; this is a reasonable assumption, since such an event is very
rare and anyway not handled by the current existing systems.

Figure 3.2: The basic protocol to make sure that a pump is reachable

3.3 The station server

The design of the intra-station architecture of our system is based on a thin client/fat
server approach. This means that almost all the computations, decisions and outside
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3.4. The enterprise server and the cloud database

interactions are managed by this central entity that is therefore a potential bottleneck
of the system. Being the number of pumps usually very low, this server embodies a
problem for fault tolerance rather than for scalability: if the server fails, this means that
no pump will be able to sell and dispense fuel.

To handle failures of the station server and keep the system up and running, we
should use more than one server. We have to decide, though, how to make these servers
behave towards one another and towards the pumps. One possible way is to use the
second server as a backup server that handles the requests only if the first and main
server has crashed. As a second choice, we can keep them active at the same time, but
this would rise problems on mutual exclusion in the handling of a pump. Therefore,
we are choosing the first option, and keep the second server as an alternative choice
to be chosen only in case a certain numbers of requests to the main server has failed
consecutively.

But what if the station server fails when the payment has been processed but the
pump has not been unlocked yet? To handle this case, and exploiting the fact of having
a central enterprise server that records all the purchases, we can think of a simple
additional step for the protocol: when the car sends the token to the station, it also
sends a message to the enterprise server, recording the basic information on the station
and the payment. In this way, in case the station server fails in this critical instant, the
customer can prove its presence in the station, even if the receipt has not been issued
before the crash.

3.4 The enterprise server and the cloud database

As mentioned before, we want to be able to record the purchases of single customers, to
be able to provide them with some statistic data, for example on their average monthly
consumption. This server provides also an additional level of confidence in the system
for the customer, that can prove its purchase as explained before. These services have to
be handled by a central enterprise server, that could also be used for the administration
of the fuel price and other wide scope operations. Such a server is clearly a bottleneck
of the system: every station needs to communicate with it, therefore (on the side of a
scalability problem) we have a node whose crash would mean that its function will be
lost until its fixing.

To prevent the failure of this system we could think of having more replicas of the
database; this makes it harder to keep them consistent (requiring reliable multicast
communication to be sure that every database is recording the same actions) and to give
mutual access to them, but helps the fault tolerance.

Note that the car should have timeout for the ACK from the enterprise server;
otherwise the waiting time can be unlimited, if the server is not going to answer because
of a failure.
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4 Gas Manager
Many mobile apps have been developed for fuel tracking, such as “My Cars” for Android
or “Fuel Monitor” for Apple . They allow the user to track when, where and how much
gas she buys, as well as the costs. Some of these apps have thousands of users, but all
share the same problem: the user has to manually input the data.

But what about a system that could have all the advantages of those apps without
any troubles? The satellite navigator will take care of storing the necessary information
in the server. This information will provide the user with the necessary data to keep
track of the consumption or to know which are the cheapest gas stations and it could
also be used by other apps to provide further services. Nevertheless, how to implement
an API for this is out of the scope of the project.

4.1 Information exchange

Chapter 2 presented an overview of the system. The basic flowchart considering the
communication with the server can be seen in figure 4.1.

Figure 4.1: Information exchange - basic flowchart

First, the car will send the information related with the gas station once it has sent
the token: the name of the gas station, the date and the amount of money that the user

12



4.2. Scalability issues

wants to pay. The name of the gas station is sent in the first iteration between the gas
station and the car whereas the satellite navigator can provide the time. This informa-
tion will be stored in the server and an ID corresponding to the user is also sent to store
the data in the relevant entry in the database. The purpose of recording this informa-
tion before finishing the operations is to log it in case something fails in the gas station
system and no receipt is sent. This way, the user can proof that his request has not been
satisfied by correlating it with the information that the banks store relating the payment.

If the system is working properly, the user will receive a receipt in the end confirm-
ing the amount of fuel that she has received, as well as the confirmation of the amount
of money charged. The car will forward this information to the server to be stored so
that it can calculate the volume price. This information may be used after to compare
different gas stations to inform the user of the cheapest ones.

The values that are stored in the database are:

• Name of the gas station.

• Date and time.

• Amount of money.

• Amount of fuel.

• Volume price. Calculated based on the previous values.

4.1.1 Protocol

HTTPS is used for the information exchange between the car and the server, which is
the standard for the communication between apps and servers. The User Agent header
will contain the name of the app.

4.2 Scalability issues

There were approximately 1.2 billion cars in the world by 2015, the number increasing
by millions each month. And the forecasts show that a high proportion of them will be
connected in the years to come. Therefore, scalability is a main issue when designing
a system that will allow users to log some data from their car every time they go to
a gas station. So not only the information stored about each user will increase, but
also the number of them. In order to handle this, scalability must be considered in the
development of the system. Trying to scale a system that was not been designed for it
is a very hard task.

One definition of “scalability” states that it is the “system’s capacity to uphold the
same performance under heavier volumes” [8]. Some principles to bear in mind when
designing a scalable system are:
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• No machine should have neither need complete information.

• Decisions should be based on local information.

• The failure of one machine must not ruin the results.

• A global shared clock should be avoided.

When looking at out system, all these properties are feasible.

If the capacity is not enough to handle the system’s requirements, two strategies can
be used to overcome the problem [7]:

• Scale up: vertical. Adding resources to a single node will directly increase the
amount of work that it can handles. This can be done, for instance, by adding
CPUs or memory to a computer.

• Scale out: horizontal. The other approach is to add more nodes to a system
rather than improving the capacity of the existing ones, e.g., by adding a new
computer.

The advantage of vertical scaling is that also the speed of the system will increase,
but is also limited by physical constraints. Horizontal scaling has the advantage that
more machines can be added when needed. However, a way to distribute the request has
to be set in the latter case to decide which machine should deal with a request. Both
techniques are usually employed.

4.3 Possible architectures

Presumably the system will not be composed of only one machine, specially if the in-
tention is to make the service scalable. It is important to choose a suitable architecture
in order to be able to scale the system in the future without needing to modify the
underlying structure.

There are two main architectural styles: client-server and peer-to-peer (P2P).

• Client-server: there are two classes of processes depending on whether they
request a service (client) or they implement it (server).

• Peer-to-Peer: in this model all the processes have similar roles and work together
to fulfill a task (peers).

Th P2P architecture is much easier to scale since it has been designed to exploit
the resources of all the machines: all the peers can both provide or consume services
to/from other nodes. However, the security decreases considerably, as no authentication
is taken. In addition, the client-server model is also much more stable since the time
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4.3. Possible architectures

when the peers are disconnected cannot be controlled in the P2P model.

The client-server approach is best suited for this system but there are still different
possibilities depending on whether the processing and data management are split in
different machines and how this separation is done.

4.3.1 Single server

The simplest architecture is based on using one single server. While it is very easy to
set up, it is almost impossible to scale.

4.3.2 Application and Database servers

The next step is to split into two the roles: one machine will be the application server,
which handles the requests from the user, and another one will be the database sever,
located in a private network, which also increases the security. Vertical scaling can be
used in this architecture for each component. Even if the capacity is increased compared
to the former architecture, it is still not enough if the number of users is substantial.

4.3.3 Load balancer

Load Balancer (Reverse Proxie) can be used to distribute the load for multiple serv-
ers. This enables horizontal scaling as more servers can be added to the infrastructure.
However, there is still a scalability problem if considering the database server, as all the
application servers would need to access it. It is also needed a load balancing algorithm:

• Random: this method picks a random number to distribute load across the serv-
ers. It is not very effective as the load is not equally distributed among the servers.

• Round Robin: the connection requests are sent in order. It can work well for
some configurations, but is not the most effective if the servers are not equal in
processing or connection speed.

• Weighted Round Robin: it is an improvement over Round Robin. The number
of connections that each machine receives is proportionate to a weight that the
administrator can define. This way, if one server can handle more load than other,
the load balancer will know.

• Least Connections: the requests are sent to the servers based on the number
of current connections. This method works better when the servers have similar
capabilities. For instance, consider two servers, A, with a limit of 150 connections,
and B, limited to 500: if A has 140 connections and B is handling 200, server A
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4.3. Possible architectures

will be selected even if it is closer to reach its maximum capacity than the other
one.

• Weighted Least Connections: similar to Least Connections but capacity of
each server is taken into consideration. It works best when the servers have different
capabilities. If not, it will behave as the Least Connection method.

4.3.4 Scaling the database

Other architectures are possible when considering a scalable database. Again, the sim-
pler one is to use one single server, but it is not very efficient.

Sharding is a technique whereby the size of the database is reduced by holding the
rows of a database table separately. This follows the principle of horizontal partitioning.
Then, the database is divided in aggregates, that combine data that’s usually accessed
together. For instance, it could be divided based in the location: Danish and German
consumers, which will also make easier where to direct the query. Figure 4.2 displays
some examples. The main drawback of this technique is its complexity.

Figure 4.2: Sharding examples using different criterias.

Master-Slave Database Replication can be another solution. One of the data-
bases, considered the master, is used only for updates (write) while one or more slave
nodes can deal with reading operations. However, to make the system consistent, each
time a change is made the master database has to replicate the information to the
slaves. This approach is recommended when the system performs many reads compared
to writes. To make the system tolerant to failures, one of the principles stated in 4.2,
one of the slaves should be able to substitute the master in case that it crashes.

Peer-to-Peer Replication. Instead of having one master, every node has read and
write access, which solves the failure problem. However, consistency here is an issue.
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4.5. Scalability in the gas station

4.4 Scalability of the application system

Taking into consideration the different approaches, the designed system will be a com-
bination between the load balancer and the master-slave database. Both are needed to
allow a horizontal scaling in the future, and the master-slave approach has been chosen
taking into consideration that an average user does not refuel the car more than once a
week. Therefore, even if the number of users is huge, we believe that this can be feasible.
However this assumption cannot be made for the read operations: we have to assume
that the number of reads performed can be much higher than for the write operations.
The sharding technique seems also a good solution for handling scalability. However the
complexity associated makes it only realistic for systems with strong availability require-
ments, whereas other techniques may be more suitable for the system here considered.

The system architecture is shown in 4.3. The approach of using a load balancer as
well as the implementation of master-slave databases allow to scale out the system easily
as the number of clients increases.

Figure 4.3: Architecture.

When considering a system with a Load Balancer, a load balancing algorithm has to
be selected. For this system, the most appropriate approach seems to be the Weighted
Least Connections. If the capabilities of the servers are similar, Least Connections could
also be used. However, the former option seems more appropriate as we cannot be
certain of which are going to be the capabilities of the equipment. This approach is the
one that makes more efficient use of the machines available, which is directly related to
scalability.

4.5 Scalability in the gas station

We have not considered the scalability property a problem for the gas station. The
reason for this is related with one of the assumptions made in 2.3: there are only few
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pumps per gas station.

There are some massive gas stations, mainly in the US, with almost 100 fueling
locations 1. However, this is not generally the practice. Usually, the amount of fueling
locations can be reduced to 4-8. Even if the number is a bit bigger, we believe that there
are not real scalability issues for this scenario, and therefore this problem has not been
considered to be as relevant as the other ones that have been addressed.

1Buc-ee’s opens massive new location in Baytown. http://abc13.com/shopping/

buc-ees-opens-in-baytown/440483/
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5 Security
There are plenty of vulnerabilities and threats for a system such as the one under con-
sideration, that involves so many parties. A complete vulnerability assessment and risk
analysis are a hard task to perform, and a suitable approach could consist of threat
assessment, vulnerability assessment, risk analysis (using frameworks such as CORAS
or Octave), countermeasure and re-evaluation.

However, this is out of the scope of this project. We will instead focus mainly on the
threat assessment of the system, and propose some general solutions for the identified
threats. Furthermore, for the same reason, we will not go into details of the attack
surfaces and the security solution implementations, but we will analyse the system from
a high-level perspective.

5.1 Threats

Below is a list of the threats we identified. Each of them is further explained in the next
section, along with a proposed solution for it.

• First authentication of the car to the token server provider (HCE vulnerabilities)

• Storage of tokens in the car’s satellite navigator

• Man-in-the-middle (MITM) and eavesdropping. In the MITM attack, an attacker
intercepts, possibly alters, and forwards messages between two parties who be-
lieve they are directly communicating with each other. A MITM attack where no
message alteration occurs is called eavesdropping. In this case the attacker makes
independent connections with the two parties and relays messages between them
to make them believe they are talking directly to each other.

The MITM (both in the form of manipulation and in the form of eavesdropping)
vulnerabilities in our system can be exploited to access sensitive information. These
attacks can take place:

– between the car and the gas station’s access point;

– between the car and the token service provider;

– between the gas station’s server and the acquirer’s bank;

– between the gas station’s server and the physical pump;

– between the car and the application server;

– between the application server and the database server.
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5.2. Solutions

Similarly to other issues addressed in the previous chapters, we are assuming that
the communications among Acquirer’s Bank, Payment Network and Issuer Bank
are kept safe by the Card Network companies that provide the tokenization ser-
vices.

• Replay attacks. In general, because of performance issues, the tokens could be re-
usable and an attacker could send them many times to perform different payments.

• The software running on the gas station server has to be tamper-resistant. By
tampering, an attacker can gain control over some aspect of the software with an
unauthorized modification that alters the software’s code and behaviour. In our
case, an attacker could tamper with the software by connecting to the gas sta-
tion with a laptop. Ways of tampering could be installing rootkits and backdoors,
disabling security monitoring, malicious code injection for data theft, altering com-
munication between cars, pumps and the server itself. The purposes of this could
be to get free fuel or steal sensitive information from communications with cars.

• A satellite navigator can be associated with many credit cards and a car can be
used by many different people so a way to protect a CC stored on the system is
needed. Someone inside the car could look at your PIN code while you type it (sol:
we could use an addition small screen on the driver’s side, or authenticate through
the smartphone)

• Gas station’s server and the backup server have to be tamper-resistent against
malicious entities

• Distributed Denial of Service (DDoS) attacks:

– DDoS to the server through the access points

– DDoS to the car that is refueling

– DDoS to the server through the Internet

• Confidentiality, integrity and availability of the application servers and the data-
base servers

5.2 Solutions

5.2.1 First authentication

To avoid all the technical and business complexities of card credentials stored on devices
in Secure Elements (SE), financial institutions are looking to move card credential data
to the cloud. With Android’s support for Host Card Emulation in the KitKat OS, cards
in the cloud are no longer pie in the sky. Moving sensitive card and personal data out of
a phone’s secure element into the cloud solves business problems by reducing the number
of actors and barriers to integration to existing systems.
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The security of the system is also improved since it is possible, though not easy, to
break into a Secure Element, given the right tools (such as lasers and spectrometers and
a certain amount of time). Research in fact shows that there is no attempt to reduce
side-channel emissions on a standard ARM CPU such as shielding to reduce emanations
or hide power consumption patterns and this causes an SE to be vulnerable to this kind
of hardware attacks.

With this knowledge we have therefore decided to adopt Host Card Emulation in our
device in order to move all the sensitive information of a credit card and the details of its
owner to the cloud. On the other hand, this leads to weaknesses during the initialization
phase in which a user has to enroll/register his bank account and his CC with the
cloud-based server that provides the wallet application.

To solve this problem, the Smart Card Alliance suggests two solutions: Cloud Storage
without Tokenization and Cloud Storage with Tokenization [2]. However, since the
former is not considered secure, we decided to go for the latter.

Cloud Storage with Tokenization consists of the following steps:

1. The issuer offering the mobile payment service guides the customer through an
enrollment/registration process that incorporates strong authentication methods.

2. The customer’s mobile app is provisioned with payment tokens.

3. At time of payment, the customer’s mobile payment app provides the tokenized
payment credentials to the merchant’s POS. The customer may be prompted to
enter a PIN specific to the use of the mobile payment app.

4. The merchant routes the transaction to the acquirer, and the transaction is ulti-
mately received by the issuer (over the payment network) for authorization. The
issuer (or an entity acting as the token vault on behalf of the issuer) authorizes
the transaction after verifying the token and identifying the associated payment
credentials.

Notice that this solution also need to consider how to securely provision the payment
token to the device. We are going to deal with this in the MITM attacks section.

Furthermore, this solution doesn’t reduce the risk of credential exposure due to malware
on the device, but reduces the impact of possible exposure by replacing the static pay-
ment credential with a token of much reduced scope. To make everything more secure
we also customize our tokens in order to reduce their validity. The tokens should be:

• Valid only for transactions not exceeding 1000 DKK (which we assume is enough
to fully refuel a car)

• Limited to a single use
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• Valid only for a limited time

Thanks to these considerations an attacker with superuser rights on the device will
manage to steal only few tokens for a small amount of money that must be used within
a short time.

5.2.2 Secure storage of the tokens in the navigator

HCE and tokenization solve the problem of locally storing and sending the PAN (Primary
Account Number) to the merchant making the communication between satellite navig-
ator and Gas Station more secure. On the other hand, the storage of these tokens in
an electronic device can be really dangerous and is considered one of the two weakest
points of HCE (the other one is the transmission of the tokens between the token service
provider and the navigator).

To avoid annoying delays and long waiting times during the payment phase, tokens
are provided in advance and are stored inside the device for future use. This common
technique is on the one hand very user-friendly, fast and reliable, but on the other hand
leads to security problems.

Nowadays applications don’t address the problem of securely storing the tokens and
just rely on the OS’s security and on the fact that tokens are usually valid only for one
transaction and only for payments below a certain threshold. On the other hand, we
think our system is dealing with a great amount of money (on average for a person 900
DKK per week; 432000 DKK per year) and therefore we decided to find a solution.

In order to guarantee confidentiality and integrity of the tokens stored, we store them
into a hardware tamper-resistant SE (Secure Element), much harder to break compared
to the OS and the memory of a system.

Secure Elements that are compliant with the Global Platform standard, are “personal-
ized” with unique keys (colloquially known as card-manager keys) required to perform
administrative operations. These keys are not known to the owner of the device (in our
case the satellite navigator) or even the operating system on the mobile device; they are
managed by a third-party called “trusted services-manager” (TSM).

When the TSM is installing a payment application and configuring that application
with its own set of secrets, the commands sent to the SE for performing those steps
are encrypted. The Global Platform specification defines a “secure messaging” protocol
describing the exact steps for establishing an authenticated & encrypted link between
TSM and secure element. This protocol – or more accurately series of protocols since
there are multiple variants – is designed to ensure that even when TSM and SE are
not in physical proximity, as in the case of provisioning a payment application over the
Internet (like in our case), sensitive information such as payment keys are delivered only
to the designated SE and not recoverable by anyone else.

While it is true that the commands sent by TSM are visible to the host operating
system, where they can be intercepted or even modified by our hypothetical adversary
who has attained root privileges, the secure messaging protocol ensures that no useful
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information is learned by mounting such an attack an no altered data is accepted by
the SE [5]. To sum up, the storage of the tokens in a SE requires much more effort
for an attacker to retrieve them. To break the SE he would probably need of expensive
hardware instrumentation as lasers and spectrometers. Naturally adopting a solution
that makes use of an SE will rise the cost of the product, but the relation benefits/costs
will still be convenient.

5.2.3 MITM attacks

Since there are many entities that are communicating in the system remotely, MITM
attacks are maybe the most probable kind of attack that can take place. An attacker,
in fact, can be really interested in eavesdropping the communication in order to steal
some tokens and use them at a later point. By manipulating the packets transmitted to
the gas station from a car, he could also pretend to have paid an huge amount of money
and hence have a great amount of fuel, when instead no money has been paid.

Between the car and the gas station’s access point. We limit the range of the
access points to a few meters, by limiting the power of the transmitted signal, so that
an attacker has to be close to the pump in order to perform a MITM.

We also try and prevent MITM attacks from the car’s point of view, by means of one-
way authentication, where the car authenticates the gas station before performing any
transaction with sensitive data. For this purpose, all gas stations would need a public
key certificate released by a Certificate Authority (CA). A public key certificate is an
electronic document that is in general used to prove ownership of a public key. It includes
information about the key and its owner’s identity, and the digital signature of the CA
that has verified the certificate’s contents are correct. The car inspects the signature,
and if it is valid then it knows the associated key can be safely used to communicate
with the gas station.
Naturally, the gas station’s CA must be certified by a Certificate Authorities to be
trustworthy.

Between the car and the token service provider. This is maybe the weakest
channel of all the system. The first-authentication phase plus all the tokens provided
by the token service provider take place via this communication channel. Since the net-
work we are analysing is the Internet and hence is a non reliable one, we must ensure
authentication and encryption. Naturally, we are going to use the standards set by the
Payment Networks and the APIs provided, but for sure we need of a strong encryption
algorithm as well as a reliable digital signature system.
The Payment Card Industry (PCI), that is the standardization authority for mobile pay-
ments suggests a list of P2PES (Point-to-Point Encryption Solutions) for the exchange
of the messages during the first-authentication phase and for the subsequent tokens ex-
change phase [3]. Visa also suggests its own standard: Visa’s PCI-based Cardholder
Information Security Program (CISP) [6]. Since it is very difficult to argue which one
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is the most secure, we decided on Visa’s one for a possible implementation only because
the documentation is really clear and easily understandable with respect to the PCI
standards.
Visa hence provides two APIs. The first one is used to enroll a new PAN on the Visa’s
secure cloud in order to receive a new unique ID number associated with the bank ac-
count related to that PAN. The second API instead is used to provide a freshly generated
token upon a request received carrying the unique ID had during the enrollment of the
PAN with the cloud.
The relevant characteristics of the updated protocols are depicted in Figs. 5.1 and 5.2.

Figure 5.1: Enrolment of the driver’s PAN and reception of the unique ID.

Between the gas station’s server and the acquirer’s bank. This kind of com-
munication is very similar to the previous one. It is carried on over the Internet network
and consists on sending tokens from the gas station to the acquirer’s bank and receive
their confirmations. The first-authentication phase is not performed over this channel,
but a malicious entity could again steal or manipulate the tokens on this communication
channel. The The tokens require naturally to be encrypted and the authentication and
non-repudiation of what has been sent is also this time very important. To perform
the transaction Visa provides another API that makes use again of the same E2EES as
before [6].

Between the gas station’s server and the physical pump. The connection
between the gas station’s server and the physical pumps maybe is the one that, sur-
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Figure 5.2: System’s protocol with the unique ID usage.

prisingly, could require the biggest effort during the implementation phase. This time
we cannot use APIs provided by someone else, but instead we have to implement our
own protocol and take adequate precautions for the communication. The goal of an
attacker who performs a MITM in this channel could be having fuel without paying, or
just paying less than what he is suppose to pay. The channel could also be used by an
attacker to have a more direct way of hacking the gas station servers, in fact up to now
we have never discussed about using a firewall between the pumps and the gas station
servers.

The first solution to the problem is of course adding a firewall in the between of the
mentioned parties. Furthermore, there is no need to have a wireless communication in
here, therefore a cabled one in this case can be more secure if the cables are kept in a se-
cure place not accessible from the outside. After this a secure protocol of communication
is also needed, such as TLS 1.2.
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Figure 5.3: Overview of the gas station part of the system.

Between the car and the application server. This communication is used by the
satellite navigator on the car to store on the cloud all the activities performed with the
car: the amount of fuel payed, the cheapest and nearest gas station, the last time the
car’s oil was changed and so on. In this case there isn’t money exchanged between the
parties, but still many personal and sensible user’s data are stored on the cloud and is
important to protect them with encryption and authentication so, again, we thought
that TLS 1.2 fits well the problem, but we didn’t go into details.

Between the application server and the database server. The communication
between the application server and the database server and in turn the Master DB
server and the slave ones (since we decided to use the Master-Slave Database Replication
technique) is a pretty weak point, particularly it increases with the scaling of the system.
To protect the queries shared we need again of a strong encryption algorithm and a a
reliable authentication method. Since the database servers are going to be more than one,
and new servers can also be added during time, we thought that a two-way-authentication
is fundamental. In our vision the Master DB server needs to know all the CAs of the
slave DB servers in advance and the slaves in turn only need to know the Master’s one.
Again we thought TLS 1.2 can be a good protocol to be used, but we didn’t investigate
the problem.
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5.2.4 Replay attacks

A replay attack could occur in our system when exchanging sensitive information. All
communications containing tokens are vulnerable – i.e. when the tokens are first sent
to the car, when a token is sent from the car to the gas station’s server for payment,
and when it is passed along by all the parties involved until it reaches the token server.
However, because of how our token system is designed, a malicious third party that gets
hold of a token is not able to reuse it, since each token can only be used for one payment.

On the other hand, if the malicious attacker manages to intercept the packets carrying
the token, drops them and collect the information in order to perform another payment
by himself the problem could persist, but it doesn’t. First of all, packets are carried via
TLS as stated before hence an hacker must be able to decrypt the information and this
isn’t an easy job. Secondly, even if the attacker manages to decrypt the information and
gets the token plus the unique ID of the victim, he has only a little time to perform
the payment since we designed our tokens to expire in a short amount of time. In the
worst scenario the hacker can steal the sensible information and perform the payment,
but still the maximum amount of money he can use is limited by a threshold that is an
intrinsic feature of the tokenization payments and can’t be tricked. Moreover, stealing
a token is an end in itself, in fact having a token doesn’t mean having the PAN and it
is exactly this the advantage of the tokenization mechanism.

5.2.5 Tamper resistance of the gas station’s server

Although there are no provably secure software anti-tampering methods, effective anti-
tamper protection can be implemented, both internally and externally. External anti-
tampering methods usually monitor the software to detect tampering, like malware scan-
ners or anti-virus software. Internal anti-tampering is implemented as specific code
within a software that detects tampering as it happens – examples of this are runtime
integrity checks, encryption or obfuscation to prevent tampering and reverse engineer-
ing. An alternative way of dealing with tampering is to build tamper-tolerant software.
There are also generic software packages that make programs tamper-resistant, but these
can be contrasted with semi-generic attacking tools.

5.2.6 Multi-user protection

Authentication of a user in the car in order to gain access to a specific credit card, can be
performed in a number of different ways. Of the three factors that are usually considered
in a authentication system – something you know, something you have, something you
are – we choose the former, which is the simplest and most common one.

A classic PIN code can be inserted using a specific device on the driver’s side, and
for this kind of application this can be considered secure enough. A biometric system
such as a fingerprint reader could be an alternative, being more expensive and complex
but also more secure and user-friendly. A further step could be to integrate the two
methods above, getting a two-factor authentication with “something you know” and
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“something you are”. This would however make authentication more complicated and
time-consuming for the user, and we believe this level of security is not necessary in this
scenario.

Even though this interaction with the user represents an additional source of vulner-
ability, where even a simple car passenger could become a threat, it is necessary if we
want to allow, as stated in the previous sections, data for multiple credit cards stored in
a single car.

Figure 5.4: System’s protocol with the user’s interaction.

5.2.7 Gas station’s server and backup server

The first line of defense for these two servers are the two firewalls that can be seen in
the previous diagram and that separate them from the outside world. Naturally this
is not enough and other countermeasures as digital certificates, security communication
protocols, anti-injection mechanism, anti ransomware and Role-Based-Access-Control
(RBAC) are needed.
There are plenty of information on literature and on the Web on how to protect servers
in different contexts and even more different solutions so we are not going to treat this
problem in this report. Must also be said that, nowadays, when you buy a server you are
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almost always provided with a Security Manager with it hence protecting a server has
become much more easier now. Refer to the consultation of CISCO Security Manager
for more details [1].

5.2.8 DDoS attacks

DDoS attacks are meant to disrupt normal service. An attacker could perform this kind
of attack in order to target the gas station, or to disrupt operations when paying. Since
there can be only a few devices connected to each access point, the traffic to an access
point or to the server cannot be very large from the gas station side. On the other hand,
on the Internet side, a DDoS attack could be more substantial.

DDoS to the server through the access points. By limiting the DHCP range of
each access point to a few IPs, we basically remove a source of DDoS attack, and it also
makes things easier when the access point has multiple car signals and has to establish
a connection with one of them.

DDoS to the car that is refueling. We think that an attacker could be interested
to disrupt the communication between the car and a pump. By placing a transmitter in
proximity of the pump a DDos to the car could be performed. To avoid this the satellite
navigator must have an efficient firewall that filter the channel. We won’t go into details
of this.

DDoS to the server through the Internet A DDos performed by the Internet
to the gas station is probably the most dangerous since the attacker can make use of
great resources as Bots and BotNets. Many entities could be interested in make the
gas station system goes down, first of all its competitors. As we already discussed the
solution proposed is to use a good firewall and great policies on it to block such attacks.
Figure 5.3 shows where the firewall is placed.

5.2.9 Application servers and database servers

To protect the Application server and the DB servers the same consideration done for
the gas station’s server and the backup one are still valid. It must be considered that
the communication between Master DB server and its slaves are almost all SQL queries
hence extremely sophisticated anti-SQL-injection functions must be implemented on the
filters that filter the traffic between the DB servers.
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6 Other properties
In this chapter we will address other properties that characterize a distributed system.
We haven’t analysed them in depth because we think they do not represent major aspects
of our system. We will here go rapidly through them, pointing out the issues that they
could present.

6.1 Openness

This characteristic only applies in our system if the information stored in the database
is available for other apps and services. This may be a possibility, but it is not the main
objective and therefore it has not been addressed.

Concerning the possibility of future extensions of the system, our setting does not
preclude such a condition, as long as the assumptions on which it bases are not contra-
dicted.

6.2 Concurrency

Several clients may want to access a shared resource at the same time and this should
be considered when implementing the system. However, we believe that the other three
properties assessed in this project (failure handling, scalability and security) are more
crucial and hence they have been addressed.

6.3 Transparency

Even if the transparency property was not addressed specifically, the system’s design
fulfill many of the transparencies that can be considered:

• Access: to hide how a resource is accessed and the different data representation.

• Location: the system works without knowledge of the physical or network location
of the resources.

• Relocation: in case a resource is moved to another location

• Failure: the system hides the failure and recovery of a resource.

• Scaling: the expansion of the system does not affect its structure or the application
algorithms.
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6.4 Heterogeneity

The heterogeneity challenge is not a problem since we have designed how the information
is exchanged by using standard communication protocols. Thus, the system can operate
irrespective of the operation system or the hardware that is being used.
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7 Conclusion
In this report we outlined and analyzed the design of a system for paying for fuel from
the car at a gas station. Our system consists of a satellite navigator with Internet con-
nection, that communicates with the gas station through access points placed at each
pump, a gas station server managing fuel requests and payments, and a cloud service
for storage of user data. The payment is secured by the use of HCE (Appendix B) and
tokenization (Appendix A).

After describing the system and the main assumptions underlying its design and
analysis, we worked towards the goal of making the system fault-tolerant by fixing the
design of individual components and the communication between them as necessary.
Then we outlined common problems and design paradigms to make systems scalable,
and addressed the scalability issues in particular regarding the application for users.
Regarding security, we spotted and discussed the vulnerabilities of the system, and
informally proposed solutions in order to make the system secure. We also briefly men-
tioned other issues that were not addressed in this report, and how they relate to our
system.

Distributed systems is a wide subject and our approach was to divide the tasks and
work on them thoroughly, identifying the problems that may affect the system and trying
to provide solutions tailored to them. We believe we have addressed the main issues,
and that our final design is a sufficiently robust distributed system that could face and
withstand a big part of the possible malicious or accidental threats. This project has
been useful to increase our knowledge of the different properties described herein as well
as the process to design a distributed system.
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APPENDIX A Tokenization
At its root, a token is something with low value representing something with high value;
just as a casino chip represents cash. In electronic payments, tokenization is being used
to reduce security risks inherent in the collection and transfer of highly sensitive data
such as credit card Personal Account Numbers (PAN). In the mobile payments world, it
is the EMVCo Payment Tokenization Specification that sets the framework for tokenizing
contactless payments.

In the EMVCo specification, the PAN is replaced it with another PAN-like number by the
tokenization system. In a typical scheme, the last four digits of the PAN are not tokenized
for continuity so banks and merchants can identify customers for actions such as returns
and loyalty programs. It is the tokenized pseudo-PAN that is sent from the POS to
the issuer for transaction authorization. The issuer uses the tokenization system to de-
tokenize the pseudo-PAN and match it to the real account data. The pseudo-PAN cannot
be reversed or de-tokenized by any other entity other than the trusted tokenization
system. Tokens can be used with all Cardholder Verification Methods (CVM) but are
limited in scope, for example to a single merchant, and duration by an expiry value.
Tokens are required to have their own BIN ranges that identify the pseudo-PAN as a
token to the payment system and can help identify contactless cloud transactions. In
a pseudo-PAN tokenization scheme, PCI-DSS risk on merchants is minimized because
the tokens have limited use and the PAN data cannot be reverse engineered. Merchants
can also use tokenization to secure their private label card data. For payment tokens,
issuers will perform Identification and Verification (ID&V) steps to make sure the token
is mapped to a valid and authorized PAN. Tokenization specifications are multi-part
solutions that also include risk management measures based on endpoint “fingerprints,”
account activity, and the depth of identification and verification processing on the issuer
side.
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APPENDIX B HCE
What does tokenization have to do with Host Card Emulation (HCE)?

Host Card Emulation, placing card data in the cloud, is the hot topic now that Visa
and MasterCard are putting working together on HCE specifications. To avoid all the
technical and business complexities of card credentials stored on devices in secure ele-
ments, financial institutions are looking to move card credential data to the cloud. With
Android’s support for Host Card Emulation in the KitKat OS, cards in the cloud are no
longer pie in the sky. Moving sensitive card and personal data out of a phone’s secure
element into the cloud solves business problems by reducing the number of actors and
barriers to integration to existing systems. However, passing encrypted card data every
time a user wants to transact is simply not feasible from both a security and user exper-
ience point of view. To enable secure cloud-based mobile payments, HCE uses multiple
techniques to ensure the security of sensitive information without burdening the user
experience. Tokenization has been one of the main security measures being considered
to make HCE cloud-based mobile payment transactions secure. Others include limited
use keys, account replenishment, and risk assessment scores.
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